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Preface

Data have always been the driving force of natural science ever since Galileo
Galilei (1564–1642). In renaissance time, he introduced the comparison of
theoretical predictions with experimental data as the ultimate test of any
scientific theory. This change of paradigm from a qualitative to a quantitative
description of nature has shaped the way we think about how science should
proceed. Today, we call it the scientific method: Start with establishing a
theory and test its prediction in experiments until you find a contradiction
with experimental data. Then refine your theory and start all over again.

But how do we come up with a theory to start with? There are two main
approaches to this: the insight of a genius and the careful inspection of data.
As examples of the former, take the idea that the entropy of an ideal gas is
proportional to the log of the number of microstates accessible to the atoms
of this gas in phase space as proposed by Ludwig Boltzmann (1844–1906). Or
the ergodic hypothesis, generally attributed to Josiah Willard Gibbs (1839–
1903), that all microstates compatible with the energy of a system are equally
probable. Or even more strikingly, Sir Isaac Newton’s (1643–1727) idea that
the force which keeps the earth orbiting the sun and the force which makes
an apple fall from a tree are one and the same. Such insights are certainly
motivated by, but evidently not derived from, experimental evidence. On the
other hand, think of the laws of planetary motion discovered by Johannes
Kepler (1571–1630). He used the extensive and accurate observations compiled
by Tycho Brahe (1546–1601) to derive his theory. Other examples may be
Charles Darwin (1809–1882) or Gregor Johann Mendel (1822–1884) who also
relied on extensive gathering of observations to come up with their theories
of evolution and inheritance.

What unites all scientists is that they seek to explain patterns in data
revealing underlying principles that govern what we see in experiments. Some
have great insight, others have to rely on the inspection of a large body of data
to arrive at a hypothesis or theory. In the above examples, hypotheses were
derived by humans. Kepler, Darwin, Mendel and many others contemplated
their data often for years until they saw a common pattern. Today, computers
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facilitate this task. Genome databases are scanned for risk factors for certain
diseases, banks let computer algorithms analyze all data available on their
customers to assess their credit risk and online vendors try to detect fraud in
an automated fashion to name but a few examples.

Besides the facilitation of the search for patterns connected with a specific
question, more importantly, computers have enabled us to analyze data even
without a specific question in mind. We can let computers mine data asking
whether there is any pattern or structure at all. The scientist must then answer
the question what brings about this structure. Naturally, this brings us to the
question of what do we consider to be a pattern or regularity. In this work,
we will understand everything that cannot be explained by randomness as
a pattern. The structures we will be concerned with are characterized by a
maximal deviation from random null models.

Specifically, we will be concerned with one particular aspect of pattern
recognition and data mining: that of clustering and dimensionality reduction.
With the ever increasing amount of empirical information that scientists from
all disciplines are dealing with, there exists a great need for robust, scalable
and easy to use clustering techniques for data abstraction, dimensionality
reduction or visualization to cope with and manage this avalanche of data.
The usefulness of statistical physics in solving these problems was recognized
as early as in the 1950s – long before computers became as abundant as
they are today [1, 2]. This monograph will show that even today, methods
and in particular spin models from statistical mechanics can help in resolving
– and more importantly – in understanding the related statistical inference
problems.

Clustering techniques belong to the field of unsupervised learning [3].
Given a data set, the goal is to group the data points such that the points
within a cluster are similar to each other and dissimilar to the rest of the
data points [4–7]. The more similar the objects within a cluster are and the
more different the clusters are, the better the clustering. Instead of having to
deal with many individual objects, the researcher can then concentrate on the
properties of only a few clusters or classes of objects with distinct features.
Though intuitively clear, clustering represents a technically ill-posed problem
for a number of reasons. First, it is not clear at which level of detail a cluster
structure is to be defined, i.e., what is the number of clusters in a data set or
whether a subset of data points shall be regarded as one cluster or be divided
further. It may also be debated whether data points may belong to more than
one cluster. Part of this problem is that the term “cluster” does not have a
well-defined meaning. Second, it is not clear what an appropriate similarity
or dissimilarity measure is supposed to be. Third and most importantly, it is
difficult to differentiate whether one is not only finding what one is search-
ing for, i.e., all clustering techniques will find some cluster structures even in
random, unstructured data.

Because of these problems there exists no single clustering technique for
all types of data and clustering techniques are still the subject of ongoing
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research. The simplest case is most likely multivariate data where each of the
data points is characterized by a D-dimensional feature vector containing real
valued entries. A typical example would be a set of objects characterized by
a number of measurements. Then, a natural similarity measure would be the
euclidean distance. As a naive approach, one can now compute the distance
between all pairs of data points and successively join close data points to
clusters. This is impractical for large data sets as the number of pairwise
distances scales as the square of the number of data points. The method of
choice then is to introduce prototypical data points as cluster centers and
find the position of these cluster centers such that they represent the data
set in some optimal way. To do this, only the determination of the distance
of each data point from each cluster center is necessary which makes the
computational effort linear in the number of data points for a given number
of clusters. This approach is taken by the k-means algorithm which is probably
the most widely used clustering technique despite its many shortcomings [4, 5].

Note that the introduction of prototypical data points which are repre-
sentative of a cluster is only possible when an actual distance measure exists
between the data points. It is not possible for instance when a matrix of
pairwise similarities alone is given. This, however, is often the case.

Another problem, known as the “curse of dimensionality” [8], arises when
the dimension D of the data set to be clustered increases [9]. The reason is that
the data points become increasingly sparse as the dimensionality increases
and the relative difference between the closest and the farthest point from
an independently selected point in the data set goes to zero with increasing
dimension [9, 10].

Both of these problems arise intrinsically when dealing with relational
data. Here, the objects to be clustered are characterized by some sort of rela-
tion. Typically, these relations are present or known for only a small fraction of
the pairs of objects and can be represented as graphs or networks. The nodes
in these networks represent the objects and their relations are represented
by their connections. A typical example is the set of authors of a number of
scientific articles and the relation between them is whether or not they have
co-authored an article together. Such data are intrinsically sparse and often
the average distance (defined as the number of steps in the network) between
two arbitrarily chosen nodes scales as the logarithm of the systems size, i.e.,
every object is close to every other object. Further, if the graph is connected,
objects in different clusters will often be only the minimal distance of one step
away from each other. There is no way to introduce prototypical objects as
only pairwise relations are given.

While in the past multivariate data sets have dominated the applications,
an increasing use and availability of data warehousing technology allows ac-
cess to more and more relational data sets. Another aspect is that the first
level of description for many complex systems is through the topology of their
interactions, i.e., networks again. Network clustering techniques hence do not
only represent exploratory data analysis tools but also are a first step in
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understanding complex systems [11]. Since conventional clustering techniques
are inadequate for networks, a number of novel approaches have been devel-
oped in recent years [12, 13]. Despite the many efforts, a number of issues
remain.

An “ideal” clustering procedure for graphs should be computationally effi-
cient in order to deal with very large data sets, i.e., it should be able to exploit
the sparsity of the data. At the same time, it should be accurate. If there is
a trade-off between runtime and accuracy this should be easily mediated. It
should further allow for overlapping as well as hierarchical clusters and allow
to set the level of detail at which a clustering should be performed. It should
have only few parameters and these should have an intuitive meaning. There
should exist a precise interpretation of the clusters found, independent from
the clustering technique. And most importantly, an ideal clustering procedure
should provide a measure of how strong the cluster structure found deviates
from that found in equivalent random data. While none of the presently avail-
able algorithms is able to combine all of these features, the present monograph
is intended to provide, analyze and show the application of a clustering pro-
cedure ideal in these ways.

Chapter 1 will give a short introduction into some graph theoretical terms
necessary for the discussions to follow and provide a brief overview over some
important aspects of complex network study. It will illustrate the problem of
structure recognition again and underline the importance of novel tests for
statistical significance.

Chapter 2 then reviews a number of cluster definitions from different fields
of science and surveys the current state of the art in graph clustering including
discussions of the merits and shortcomings of each method.

After this discussion, a first principles approach to graph clustering in
complex networks is developed in Chapters 3 and 4. In particular, the prob-
lem of structure detection is tackled via an analogy with a physical system
by mapping it onto finding the ground state of an infinite range Potts spin
glass Hamiltonian. The ground state energy of this spin glass is equivalent
to the quality of the clustering with lower energies corresponding to better
clusterings. Benchmarks for the accuracy in comparison with other methods
are given. Computationally efficient update rules for optimization routines are
given which work only on the links of the network and hence take advantage
of the sparsity of the system. Model systems with overlapping and hierarchical
cluster structures are studied. The equivalence of graph clustering and graph
partitioning is derived from the fact that random graphs cluster into equally
sized parts. Using known results for the expected cut size in graph partition-
ing for dense graphs with a Poissonian degree distribution, expectation values
for the modularity of such networks are derived.

In order to extend these results to dense random networks with arbitrary
degree distribution, the replica method is used in Chapter 5. The modularity
of graphs with arbitrary degree distributions is calculated which allows the
comparison of modularities found in real world networks and random null
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models. The results can also be used to improve results for the expected cut
size of graph partitioning problems.

Chapter 6 is devoted to the study of modularity in sparse random net-
works of arbitrary degree distribution via the cavity method. This approach
is complementary to the replica method and improves its results in cases
of small average connectivities. Furthermore, it allows the calculation of the
maximum achievable accuracy of a clustering method and provides insight
into the theoretical limitations of data-driven research.

In Chapter 7, the newly developed clustering method is applied to two
real world networks. The first example is an analysis of the structure of the
world trade network across a number of different commodities on the level
of individual countries. The second application deals with a large market
network and studies the segmentation of the individual users of this market.
The application shows how a network clustering process can be used to deal
with large sparse data sets where conventional analyses fail.

The concluding Chapter 8 summarizes work and hints on directions for
further research.

Last but not least, it is my pleasure to acknowledge a number of cowork-
ers and colleagues for their contributions in making this work possible. I am
grateful for the fruitful collaboration with Stefan Bornholdt, Peter Ahnert,
Michele Leone and Douglas R. White. I have greatly enjoyed and bene-
fited from many discussions with Konstantin Klemm, Holger Kirsten, Stefan
Braunewell, Klaus Pawelzik, Albert Diaz-Guilera, Ionas Erb, Peter Stadler,
Francesco Rao, Amadeo Caflisch, Geoff Rodgers, Andreas Engel, Riccardo
Zecchina, Wolfgang Kinzel, David Saad and Georg Reents. Many parts of this
work would not have been possible without the great expertise and support
of these colleagues.

Bremen/Würzburg, Jörg Reichardt
May 2008

References

1. E. T. Jaynes. Information theory and statistical mechanics. Physical Review,
106(4):620–630, 1957. VI

2. E. T. Jaynes. Information theory and statistical mechanics ii. Physical Review,
108(2):171–190, 1957. VI

3. A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. Cambridge
University Press, New York, 2001. VI

4. L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley-Interscience, New York, 1990. VI, VII

5. B.S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Arnold, London, 4
edition, 2001. VI, VII



X Preface

6. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, 1999. VI

7. P. Arabie and L. J. Hubert. Combinatorial data analysis. Annual Review of
Psychology, 43:169–203, 1992. VI

8. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University
Press, Princeton, 1961. VII
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1

Introduction to Complex Networks

Classical physics traditionally treats problems at two very different scales. On
one hand, there is the microscopic scale in which the properties of and interac-
tions between all particles involved are known and the temporal development
of the system is described by a set of differential equations. Celestial mechanics
is an example of this type of treatment. On the other hand, there is statis-
tical mechanics. There also the interactions between all particles are exactly
known, but the system is comprised of so many particles that the solution of
the differential equations becomes not only impossible but also meaningless.
The general treatment here is to either neglect all interactions or to subsume
them all into an “effective field” and then deal with an effective single particle
problem. Instead of exact results, only expectation values are obtained. Due
to the large numbers of particles involved, these expectation values are near
exact approximations. Examples of this treatment are the thermodynamics of
ideal gasses or simple models of magnetic materials such as the Ising model.
Both of these approaches are reductionist: the system can be described com-
pletely from the bottom-up via the properties and interactions of elementary
constituents at the microscopic level.

Despite the success of the reductionist approach, a number of systems re-
sist such description. They are too complicated to be described exactly, or
insufficient information exists to be able to describe them exactly, but they
are not large or simple enough that they could be reduced to effective single
particle problems. Often, the constituents of the system are very heteroge-
neous and many different types of interactions exist. Such systems exhibit
characteristic properties which are, however, not readily explained by their
microscopic properties and are often called “complex” [1]. The prototypical
example of a complex system is the brain. Though the workings of an indi-
vidual neuron or synapse are very well understood, the mechanisms by which
memory, learning, creativity or consciousness emerge from the interactions
of many neurons remain largely unexplained. Complex systems also occur in
other areas of biology, economies and societies and many other fields.
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2 1 Introduction to Complex Networks

A first step in understanding complex systems is trying to understand pat-
terns and regularities of interactions in a way which might make it possible to
break the systems down into possible subcomponents. To do so, it is necessary
to find a way of representing complex systems.

A convenient way to represent complex systems is through graphs or
networks. The interactions of the microscopical entities of the system are
represented by the connections of the network. Hence, one can use the math-
ematical language of graph theory [2] to describe complex systems and to
investigate the topological properties of the interactions defining the system.
The interested reader will find three excellent and well-readable review papers
which may serve as a summary and starting point into the research of complex
networks [3–5]. A more comprehensive overview can be found in the following
books [6–8] while an introduction for the general reader may be found in [9–
11]. Before going into the discussion in detail, a number of important graph
theoretical terms and relations used throughout the text shall be introduced.
The reader already familiar with network analysis and basic graph theory may
skip this section.

1.1 Graph Theoretical Notation

Mathematically, a network is represented as a graph G(V,E), i.e., an object
that consists of a set of nodes or vertices V representing the objects or agents
in the network and a set E of edges or links or connections representing the
interactions or relations of the nodes. The cardinality of these sets, i.e, the
number of nodes and edges, is generally denoted by N and M , respectively.
One may assign different values wij to the links between nodes i and j in E,
rendering an edge weighted or otherwise non-weighted (wij = 1 by convention,
if one is only interested in the presence or absence of the relation). The number
of connections of node i is denoted by its degree ki. One can represent the set
of edges conveniently in an N × N matrix Aij , called the adjacency matrix.
Aij = wij if an edge between node i and j is present and zero otherwise.
Relations may be directed, in which case Aij is non-symmetric (Aij �= Aji)
or undirected in which case Aij is symmetric. Here, we are mainly concerned
with networks in which self-links are absent (Aii = 0, ∀i ∈ V ). In case of
a directed network, Aij denotes an outgoing edge from i to j. Hence, the
outgoing links of node i are found in row i, while the incoming links to i are
found in column i. For undirected networks, it is clear that

∑N
j=1 Aij = ki.

For directed networks,
∑

j=1 Aij = kout
i is the out-degree and equivalently

∑
j=1 Aji = kin

i is the in-degree of node i. It is understood that in undirected
networks, the sum of degrees of all nodes in the network equals twice the
number of edges

∑N
i=1 ki = 2M . The distribution of the number of connections

per node is called degree distribution P (k) and denotes the probability that
a randomly chosen node from the network has degree k. The average degree
in the network is denoted by 〈k〉 and one has N〈k〉 = 2M . One can define a
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probability p = 2M/N(N − 1) = 〈k〉/(N − 1) as the probability that an edge
exists between two randomly chosen nodes from the network.

An (induced) subgraph is a subset of nodes v ⊆ V with n nodes and
edges e ⊆ E connecting only the nodes in v. A path is a sequence of nodes,
subsequent nodes in the sequence being connected by edges from E. A node i
is called reachable from node j if there exists a path from j to i. A subgraph
is said to be connected if every node in the subgraph is reachable from every
other. The number of steps (links) in the shortest path between two nodes i
and j is called the geodesic distance d(i, j) between nodes i and j. A network
is generally not connected, but may consist of several connected components.
The largest of the shortest path distances between any pair of nodes in a
connected component is called the diameter of a connected component. The
analysis in this monograph shall be restricted to connected components only
since it can be repeated on every single one of the connected components of a
network. More details on graph theory may be found in the book by Bollobás
[2].

With these notations and terms in mind, let us now turn to a brief overview
of some aspects of physicists research on networks.

1.2 Random Graphs

For the study of the topology of the interactions of a complex system it is
of central importance to have proper random null models of networks, i.e.,
models of how a graph arises from a random process. Such models are needed
for comparison with real world data. When analyzing the structure of real
world networks, the null hypothesis shall always be that the link structure
is due to chance alone. This null hypothesis may only be rejected if the link
structure found differs significantly from an expectation value obtained from a
random model. Any deviation from the random null model must be explained
by non-random processes.

The most important model of a random graph is due to Erdős and Rényi
(ER) [12]. They consider the following two ensembles of random graphs:
G(N,M) and G(N, p). The first is the ensemble of all graphs with N nodes
and exactly M edges. A graph from this ensemble is created by placing the M
edges randomly between the N(N − 1)/2 possible pairs of nodes. The second
ensemble is that of all graphs in which a link between two arbitrarily chosen
nodes is present with probability p. The expectation value for the number
of links of a graph from this ensemble is 〈M〉 = pN(N − 1)/2. In the limit
of N → ∞, the two ensembles are equivalent with p = 2M/N(N − 1). The
typical graph from these ensembles has a Poissonian degree distribution

P (k) = e−〈k〉 〈k〉k
k!

. (1.1)

Here, 〈k〉 = p(N − 1) = 2M/N denotes the average degree in the network.
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The properties of ER random graphs have been studied for considerable
time and an overview of results can be found in the book by Bollobás [13].
Note that the equivalence of the two ensembles is a remarkable result. If all
networks with a given number of nodes and links are taken to be equally
probable, then the typical graph from this ensemble will have a Poissonian
degree distribution. To draw a graph with a non-Poissonian degree distribution
from this ensemble is highly improbable, unless there is a mechanism which
leads to a different degree distribution. This issue will be discussed below in
more detail.

Another aspect of random networks is worth mentioning: the average
shortest path between any pair of nodes scales only as the logarithm of the
system size. This is easily seen: Starting from a randomly chosen node, we
can visit 〈k〉 neighbors with a single step. How many nodes can we explore
with the second step? Coming from node i to node j via a link between them,
we now have dj = kj − 1 options to proceed. Since we have kj possible ways
to arrive at node j, the average number of second step neighbors is hence
〈d〉 =

∑∞
k=2(k − 1)kP (k)/(

∑∞
k kP (k)) = 〈k2〉/〈k〉 − 1. Hence, after two steps

we may explore 〈k〉〈d〉 nodes and after m steps 〈k〉〈d〉m−1 nodes which means
that the entire network may be explored in m ≈ log N steps. This also shows
that even in very large random networks, all nodes may be reached with rel-
atively few steps. The number d = k − 1 of possible ways to exit from a node
after entering it via one of its links is also called the “excess degree” of a
node. Its distribution q(d) = (d + 1)P (d + 1)/〈k〉 is called the “excess de-
gree distribution” and plays a central role in the analysis of many dynamical
phenomena on networks. Note that our estimate is based on the assumption
that in every new step we explore 〈d〉 nodes which we have not seen before!
For ER networks, though, this is a reasonable assumption. However, consider
a regular lattice as a counterexample. There, the average shortest distance
between any pair of nodes scales linearly with the size of the lattice.

1.3 Six Degrees of Separation

The question of short distances was one of the first addressed in the study of
real world networks by Stanley Milgram [14]. It was known among sociologists
that social networks are characterized by a high local clustering coefficient:

ci =
2mi

ki(ki − 1)
. (1.2)

Here, mi is the number of connections among the ki neighbors of node i. In
other words, ci measures the probability of the neighbors of node i being con-
nected, that is, the probability that the friends of node i are friends among
each other. The average of this clustering coefficient over the set of nodes in
the network is much higher in social networks than for ER random networks
with the same number of nodes and links where 〈c〉 = p. This would mean
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that the average shortest distance between randomly chosen nodes in social
networks may not scale logarithmically with the system size. To test this,
Milgram performed the following experiment: He gave out letters in Omaha,
Nebraska, and asked the initial recipients of the letters to give the letters only
to acquaintances whom they would address by their first name and require
that those would do the same when passing the letter on. The letters were
addressed to a stock broker living in Boston and unknown to the initial recip-
ients of the letter. Surprisingly, not only did a large number of letters arrive
at the destination, but the median of the number of steps it took was only
6. This means the path lengths in social networks may be surprisingly short
despite the high local clustering. Even more surprisingly, the agents in this
network are able to efficiently navigate messages through the entire network
even though they only know the local topology. After this discovery, Dun-
can Watts and Steve Strogatz [15] provided the first model of a network that
combines the high clustering characteristic for acquaintance networks and the
short average path lengths known from ER random graphs. At the same time,
it retains the fact that there is only a finite number of connections or friends
per node in the network. The Watts/Strogatz model came to be known as
the “small world model” for complex networks. It basically consists of a reg-
ular structure producing a high local clustering and a number of randomly
interwoven shortcuts responsible for the short average path length. It was
found analytically that a small number of shortcuts, added randomly, suffice
to change the scaling of the average shortest path length from linear with
system size to logarithmically with system size.

1.4 Scale-Free Degree Distributions

With the increasing use of the Internet as a source of information and means of
communication as well as the increasing availability of large online databases
and repositories, more and more differences between real world networks and
random graphs were discovered. Most strikingly was certainly the observation
that many real world networks have a degree distribution far from Poissonian
with heavy tails which rather follows a log-normal distribution or alternatively
a power law.

For networks with a power-law degree distribution the notion of a “scale-
free” degree distribution is often used. A scale-free degree distribution is char-
acterized by a power law of the form

P (k) ∝ k−γ , (1.3)

with some positive exponent γ. The probability of having k neighbors is in-
versely proportional to kγ . The name “scale free” comes from the fact that
there is no characteristic value of k. While in ER graphs, the characteristic
k is the average degree 〈k〉, i.e., the average is also a typical k, there is no
typical degree in scale-free networks.
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From these observations, it became clear that the assumption of equal
linking probability for all pairs of nodes had to be dropped and that specific
mechanisms had to be sought which could explain the link pattern of com-
plex networks from a set of rules. Until now, many such models have been
introduced which model networks to an almost arbitrary degree of detail. The
starting point for this development was most likely the model by Barabási and
Albert [16]. They realized that for many real world networks, two key ingredi-
ents are crucial: growth and preferential attachment, i.e., nodes that already
have a large number of links are more likely to acquire new ones during the
growth of the network. These two simple assumptions lead them to develop
a network model which produces a scale-free degree distribution of exponent
γ = 3. Consequently, this model was used as a first attempt to explain the
link distribution of web pages.

In order to model an ensemble of random graphs with a given degree
distribution without resorting to some growth model of how the graph is knit
the “configuration model” can be used. It is generally attributed to Molloy
and Reed [17], who devised an algorithm for constructing actual networks, but
it was first introduced by Bender and Canfield [18]. The configuration model
assumes a given degree distribution P (k). Every node i is assigned a number
of stubs ki according to its degree drawn from P (k) and then the stubs are
connected randomly. For this model, the probability that two randomly chosen
nodes are connected by an edge can be well approximated by pij = kikj/2M

as long as the degrees of the nodes are smaller than
√

2M . The probability
to find a link between two nodes is hence proportional to the product of the
degrees of these two nodes. The configuration model and the ER model make
fundamentally different assumptions on the nature of the objects represented
by the nodes. In the ER model, fluctuations in the number of connections of a
node arise entirely due to chance. In the configuration model, they represent
a quality of the node which may be interpreted as some sort of “activity” of
the object represented by the node.

1.5 Correlations in Networks

Thus far, only models in which all nodes were equivalent have been intro-
duced. In many networks, however, nodes of different types coexist and the
probability of linking between them may depend on the types of nodes. A
typical example may be the age of the nodes in a social network. Agents of
the same age generally have a higher tendency to interact than agents of dif-
ferent ages. Let us assume the type of each node is already known. One can
then ask whether the assumption holds, that links between nodes in the same
class are indeed more frequent than links between nodes in different classes.
Newman [19] defines the following quantities: ers as the fraction of edges that
fall between nodes in class r and s. Further, he defines

∑
r ers = as as the

fraction of edges that are connected to at least one node in class s. Note that
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ers can also be interpreted as the probability that a randomly chosen edge lies
between nodes of class r and s and that as can be interpreted as the proba-
bility that a randomly chosen edge has at least one end in class s. Hence, a2

s

is the expected fraction of edges connecting two nodes of class s. Comparing
this expectation value with the true value ess for all groups s leads to the
definition of the “assortativity coefficient” rA:

rA =
∑

s

(
ess − a2

s

)

1 −
∑

s a2
s

. (1.4)

This assortativity coefficient rA is one, if all links fall exclusively between
nodes of the same type. Then the network is perfectly “assortative”, but the
different classes of nodes remain disconnected. It is zero if ess = a2

s for all
classes s, i.e., no preference in linkage for either the same or a different class
is present. It takes negative values, if edges lie preferably between nodes of
different classes, in which case the network is called “disassortative”. The
denominator corresponds to a perfectly assortative network. Hence, rA can
be interpreted as the percentage to which the network is perfectly assortative.

For the classes of the nodes, any measurable quantity may be used [20].
Especially interesting are investigations into assortative mixing by degree, i.e.,
do nodes predominantly connect to other nodes of similar degree (assortative,
rA > 0) or is the opposite the case (disassortative, rA < 0). It was found that
many social networks are assortative, while technological or biological net-
works are generally disassortative [20]. Note that rA may also be generalized
to the case where the class index s takes continuous values [20]. It should be
stressed that such correlation structures do not affect the degree distribution.

1.6 Dynamics on Networks

Apart from these topological models mainly concerned with link structure,
a large number of researchers are concerned with dynamical processes tak-
ing place on networks and the influence the network structure has on them.
Among the most widely studied processes is epidemic spreading and one of the
most salient results is certainly that by Cohen [21, 22], which shows that for
scale-free topologies with exponents larger than two and low clustering, the
epidemic threshold (the infectiousness a pathogen needs to infect a significant
portion of the network) drops to zero. The reason for this is, in principle, the
fact that for scale-free degree distributions with exponents between 2 and 3
the average number of second neighbors 〈d〉 may diverge. Liljeros showed that
networks of sexual contacts do have indeed such a topology [23]. At the same
time, these results brought about suggestions for new vaccination techniques
such as the vaccination of acquaintances of randomly selected people which
allows us to vaccinate people with higher numbers of connections with higher
efficiency [24]. Consequently, a number of researchers are also studying the in-
terplay between topology of the network and dynamic processes on networks
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in models that allow dynamic rewiring of connections in accordance with, for
instance, games being played on the network to gain insights into the origin
of cooperation [25].

All of this research has shown the profound effect of the topology of the
connections underlying a dynamical process and hence underlines the impor-
tance of thoroughly studying the topology of complex networks.

1.7 Patterns of Link Structure

The above discussion has shown the importance of investigating the link struc-
ture in real world networks. One can view this problem as a kind of pattern
detection. Patterns are generally viewed as expressions of some kind of regu-
larity. What such a regularity may be, however, remains often a vague concept.
It might be sensible to define everything as regular which is not random.

The structure this monograph is concerned with is a particular type of
non-random structure in complex networks which is closely related to the
aforementioned correlations. The section about correlations has shown that if
the different types of nodes in a network are known, the link structure of the
network may show a particular signature. In the majority of cases, however,
the presence of different types of nodes is only hypothesized and the type of
each node is unknown. The purpose of this work is to develop methods to
detect the presence of different types of nodes in networks and to find the
putative type of each node. A number of possible applications from various
fields shall motivate the problem again.

Suppose we are given a communication network of an enterprise. Nodes
are employees and links represent communication, e.g., via e-mail, between
them. We may then search for “communities of practice” – employees who
are particularly well connected among each other, i.e., with highly enriched
in-group communication. It is then possible to compare these communities of
practice to the organizational structure of the enterprise and possibly use the
results in the assembly of teams for future projects. A study in this direction
has been performed by Tyler et al. [26].

Novel experimental techniques from biology allow the automatic extraction
of all proteins produced by an organism. Proteins are the central building
blocks of biological function, but generally, proteins do not function alone but
bind to one another to form complexes which in turn are capable of performing
a particular function, such as initiating the transcription of a particular piece
of DNA. It is now possible to study the pairwise binding interactions of a
large number of proteins in an automated way [27]. The result of such a
study is a protein interaction network in which the links represent pairwise
interactions between proteins. Protein function should be mirrored in such
a network. For instance, proteins forming part of a complex should now be
detectable as densely interlinked groups of nodes in such a network [28]. An
analysis of the structure of a protein interaction or other biological network
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created by automated experiments hence presents a first step in planning
future experiments [29].

The collection of scientific articles represent a strongly fragmented repos-
itory of scientific knowledge [30, 31]. Online databases make it possible to
study these in an automated way, e.g., in form of co-authorship networks or
citation networks. In the former, nodes are researchers while links represent
co-authorship of one or more articles. Analysis of the structure of this network
may give valuable information about the cooperation between various scien-
tists and aid in the evaluation of funding policy or influence future funding
decisions. In the latter, nodes in the network are scientific articles and links
denote the citation of one from the other. Analysis of the structure of this
network may yield insight into the different research areas of a particular field
of science.

With these examples in mind it becomes clear that the detection of struc-
tural patterns is not only important in the description of complex systems
which are represented through networks, but can be viewed as an elementary
technique for the exploratory analysis of any kind of relational data set. The
above examples have also illustrated that such exploratory analysis is often
the starting point of further work. It is therefore important to assess the sta-
tistical validity of the findings and avoid the “deception of randomness” [32],
i.e., to ensure that the findings of an algorithm are statistically significant and
not the mere result of the search process. To illustrate this, let us consider
the following problem: Given is an ER network with average degree 〈k〉 = 5.
Also given is that the network consists of two types of nodes A and B with
50 nodes of each type and only 42 links running between nodes of type A
and B and the remainder of the 250 links within groups of type A and B,
respectively. If nodes were connected independently of their type, the total
number of links between type A and B nodes is Poisson distributed with a
mean of 〈k〉N/4 = 125 and a standard deviation of σ = 11. Hence, finding
only 42 links between A and B is statistically highly significant with a p-value
of p = 2.8× 10−18. Now assume that the type of each node was not given and
we had searched for an assignment into two equally sized groups A and B with
a minimum number of links between the groups. At which number of links
between groups would such a finding become significant? The search space

for this task consists of
(

N
N/2

)

possible assignments of the nodes into two

equally sized groups. Applying a Bonferroni correction [33] for this number
of different “experiments” would lead to a situation where less than 22 con-
nections between nodes of type A and B would be significant at the 5% level.
With this correction, recovering the initial configuration with 42 links between
nodes of different types could not be called significant. As will be shown in
the course of this work, 42 is the typical number of links running between the
different parts when partitioning an ER random network with 100 nodes and
〈k〉 = 5 into two equal sized groups. In other words, every configuration with
less than 42 links between groups indicates a significant deviation from pure
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random linking and hence structure in the data. Thus, statistical significance
starts much earlier than the limit given by the Bonferroni correction. The
Bonferroni correction fails here because it assumes independent experiments.
The different assignments into groups produced by a search process, however,
are not independent.

These considerations should exemplify that standard statistical tests are
problematic when the assignment of types to nodes results from a search
process and novel methods for the assessment of statistical significance are
needed. Large parts of this work are therefore devoted to the study of what
kind of structure can be found in random networks such that everything be-
yond these expectation values for random networks can be taken as indicating
true structure in the data.
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2

Standard Approaches to Network Structure:
Block Modeling

2.1 Positions, Roles and Equivalences

By investigating data from a wide range of sources encompassing the life
sciences, ecology, information and social sciences as well as economics, re-
searchers have shown that an intimate relation between the topology of a
network and the function of the nodes in that network indeed exists [1–9].
A central idea is that nodes with a similar pattern of connectivity will per-
form a similar function. Understanding the topology of a network will be a
first step in understanding the function of individual nodes and eventually the
dynamics of any network.

As before, we can base our analysis on the work done in the social sciences.
In the context of social networks, the idea that the pattern of connectivity is
related to the function of an agent in the network is known as playing a “role”
or assuming a “position” [10, 11]. Here, we will endorse this idea.

The nodes in a network may be grouped into equivalence classes according
to the role they play. Two basic concepts have been developed to formalize the
assignments of roles individuals play in social networks: structural and regular
equivalence. Both are illustrated in Fig. 2.1. Two nodes are called structurally
equivalent if they have the exact same neighbors [12]. This means that in the
adjacency matrix of the network, the rows and columns of the corresponding
nodes are exactly equal. The idea behind this type of equivalence is that two
nodes which have the exact same interaction partners can only perform the
exact same function in the network. In Fig. 2.1, only nodes A and B are
structurally equivalent while all other nodes are structurally equivalent only
to themselves.

To relax this very strict criterion, regular equivalence was introduced [13,
14]. Two nodes are regularly equivalent if they are connected in the same
way to equivalent others. Clearly, all nodes which are structurally equivalent
must also be regularly equivalent, but not vice versa. The seemingly circular
definition of regular equivalence is most easily understood in the following way:
Every class of regularly equivalent nodes is represented by a single node in an
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F

E

D
B

CA

E+FC+DA+B

Fig. 2.1. Example network illustrating structural and regular equivalence. Nodes A
and B have the same neighbors and are thus structurally equivalent and regularly
equivalent. Nodes C though F form four different classes of structural equivalence
but can be grouped into only two classes of regular equivalence as shown in the
image graph or role model on the right.

“image graph”. The nodes in the image graph are connected (disconnected),
if connections between nodes in the respective classes exist (are absent) in
the original network. In Fig. 2.1, nodes A and B, C and D as well as E
and F form three classes of regular equivalence. If the network in Fig. 2.1
represents the trade interactions on a market, we may interpret these three
classes as producers, retailers and consumers, respectively. Producers sell to
retailers, while retailers may sell to other retailers and consumers, which in
turn only buy from retailers. The image graph (also “block” or “role model”)
hence gives a bird’s-eye view of the network by concentrating on the roles,
i.e., the functions, only. Note that no two nodes in the image graph may be
structurally equivalent, otherwise the image graph is redundant.

2.2 Block Modeling

Let us consider the larger example from Fig. 2.2. The network consists of 18
nodes in 4 designed roles. Nodes of type A connect to other nodes of type A
and to nodes of type B. Those of type B connect to nodes of type A and C,

A B C D
A

A

B

B

C

C

D

D

Network Adjacency matrix Image Graph

A B

C D

Fig. 2.2. An example network and two possible block models. The nodes in this
network can be grouped into four classes of regular equivalence (A, B, C and D).
Ordering the rows and columns of the adjacency matrix according to the four classes
of regular equivalence makes a block structure apparent (there are 16 blocks from
the 4 classes), which is efficiently represented by an image graph.
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acting as a kind of intermediary. Nodes of type C have connections to nodes of
type B, others of type C and of type D. Finally, nodes of type D form a kind of
periphery to nodes of type C. An ordering of rows and columns according to
the types of nodes makes a block structure in the adjacency matrix apparent.
Hence the name “block model”. The image graph effectively represents the
4 roles present in the original network and the 16 blocks in the adjacency
matrix. Every edge present in the network is represented by an edge in the
image graph and all edges absent in the image graph are also absent in the
original network.

Regular equivalence, though a looser concept than structural equivalence,
is still very strict as it requires the nodes to play their roles exactly, i.e., each
node must have at least one of the connections required and may not have
any connection forbidden by the role model. In Fig. 2.2, a link between two
nodes of type A may be removed without changing the image graph, but an
additional link from a node of type A to a node of type C would change the
role model completely. Clearly, this is unsatisfactory in situations where the
data are noisy or only approximate role models are desired for a very large
data set.

One way to relax the strict condition of regular equivalence is to allow for
“generalized block modeling” introduced by Doreian, Batagelj and Ferligoj
[15]. Figure 2.3 summarizes the nine types of blocks introduced by Doreian
et al. They encompass the different possibilities that arise in directed networks
already:

• Complete blocks:
Every node of type X has an outgoing link to every node of type Y and
each node of type Y has an incoming link from every node of type X. If
we have only complete and null blocks, we have found a classification into
structural equivalence classes.

• Row dominant:
One node of type X has an outgoing link to every node of type Y .

• Column dominant:
One node of type Y has an incoming link from every node of type X.

• Regular:
Each node of type X has at least one outgoing link to a node of type Y
and each node of type Y has at least one incoming link from a node of
type X. If all blocks in the block model are regular, complete or null, we
have found a classification into regular equivalence classes.

• Row regular:
Each node of type X has at least one outgoing link to a node of type Y .

• Column regular:
Each node of type Y has at least one incoming link from a node of type
X

• Null:
There are no links connecting nodes of type X and Y .
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1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1 0 0 1

1 1 0 0

complete

regular row-regular column-regular

column-functionalrow-functionalnull

row-dominant column-dominant

1 0 0 1

0 1 0 0

0 1 0 1

1 0 1 0

1 0 0 1

1 0 0 0

0 0 0 1

1 0 1 1

0 0 0 0

1 0 1 0

0 0 0 1

1 1 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 0

0 1 0 0

0 0 0 0

1 0 1 0

0 0 0 1

0 1 0 0

Fig. 2.3. Example adjacency matrices and corresponding connection patterns ac-
cording to the nine types of blocks for generalized block modeling after [15].

• Row functional:
Each node of type X has exactly one outgoing link to a node of type Y .

• Column functional:
Each node of type Y has exactly one incoming link from a node of type
X.

The introduction of row- and column-dominant, row- and column-regular
and row- and column- functional blocks is what relaxes the condition of regular
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equivalence and allows for a wider spectrum of possible topologies to be sum-
marized as a block model. For undirected networks, the need to differentiate
between row- and column-type blocks vanishes and one is left with an exten-
sion of regular blocks to dominant and functional blocks.

Even with these extensions, two major problems remain: One is the fault
tolerance, i.e., a bock model should be robust to both false positive as well as
false negative links in the network. The second is that for generalized block
modeling as introduced by Doreian et al., it is not clear how to find the best
block model for a network. The general approach is to hypothesize a block
structure and then try to find a good assignment of nodes into the different
classes as to fit the proposed block model. To overcome these problems, we
will adopt and extend the density-based approach as already suggested in [11].
It may be possible to assign nodes into groups such that blocks of high and
low density of links appear in the adjacency matrix of the network. Figure 2.4
shows a number of examples of this together with the corresponding image
graphs indicating between which types of nodes a high density of links exists.
The adjacency matrices are larger now than in Fig. 2.2 and make the blocks
resulting from the different link densities more salient. Before this, however, we
will focus on one particular type of block structure: so-called cohesive blocks
or modular or community structures. Modular or community structures are

a)

A

B
b)

A

B
c)

A

B

d)

A

B

C e)

A

B

C f)

A

B

C g)

A

B

C

h)

A

B

C i)

A

B

C j)

A

B

C k)

A

B

C

Fig. 2.4. Example adjacency matrices for networks with 60 nodes in 2 or 3 roles
and corresponding image graphs. Rows and columns in matrices are ordered such
that nodes of the same type (in the same role) are adjacent. Hence, blocks appear
in the adjacency matrix due to the similar pattern of connectivity among nodes
of the same type. The types are represented by a single node in the image graph.
Background shading of matrices reflects the link density in blocks. We show only
those three-role models which are not isomorphic and which cannot be reduced to
a block model of two roles only. The two-role models can be understood as (a)
modular structure, where nodes connect primarily to nodes of the same role; (b)
bi-partition, with connections primarily between nodes of different type; and (c) a
core–periphery structure with nodes of type A (the core) connecting preferentially
among themselves and to nodes of type B (the periphery). The three-role models
can be seen as combinations of these three basic structures plus the possibility of
having intermediates.
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characterized by the fact that the nodes in a network may be assigned into
groups which are densely connected internally but only sparsely to the rest
of the network. In Fig. 2.4 the networks (a) and (d) are examples of this. We
may also call such modular structures “diagonal block models”.

2.3 Cohesive Subgroups or Communities as Block
Models

The abundance of diagonal block models or modular structures makes mod-
ularity a concept so important that it is often studied outside the general
framework of block modeling. One explanation may be that in social net-
works it may even be the dominant blocking structure. The reason may be
that homophily [16], i.e., the tendency to form links with agents similar to
oneself, is a dominant mechanism in the genesis of social networks. Recall,
however, that the concept of functional roles in networks is much wider than
mere cohesiveness as it specifically focuses on the inter-dependencies between
groups of nodes. Modularity or community structure, emphasizing the absence
of dependencies between groups of nodes is only one special case. It may also
be that the concept of modularity appeals particularly to physicists because
it is reminiscent of the reductionist approach of taking systems apart into
smaller subsystems that has been so successful in the natural sciences.

Nevertheless, in the literature, there is no generally accepted definition of
what a community or module actually is. A variety of definitions exist that
all imply that members of a community are more densely connected among
themselves than to the rest of the network. Two approaches exist to tackle the
problem. Either, one starts with a definition of what a community is in the first
place and then searches for sets of nodes that match this definition. Or one can
use a heuristic approach by designing an algorithm and define a community
as whatever this algorithm outputs. Both of these approaches differ in one
fundamental way: When starting from a definition of community, it often
occurs that some nodes in the network will not be placed into any community.
The algorithmic approaches on the other hand will generally partition the set
of vertices such that all nodes are found in some community. Whether all nodes
need to be assigned into a community needs to be decided by the researcher
and may determine which definitions and methods are useful in the analysis
of actual data. With these considerations in mind we shall briefly review the
approaches taken in the literature.

2.3.1 Sociological Definitions

The study of community structure has a long tradition in the field of sociology
and it comes as no surprise that the example that sparked the interest of physi-
cists in the field was a sociological one [17, 18]. Alternatively to community,
the term cohesive subgroup is often used to subsume a number of definitions
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that emphasize different aspects of the problem. These can be grouped into
definitions based on reachability, nodal degree or the comparison of within to
outside links [11].

Cliques are complete subgraphs, such that every member is connected to
every other member in the clique. An n-clique is a maximal subgraph, such
that the geodesic distance d(i, j) between any two members i, j is smaller or
equal to n. Naturally, cliques are 1-cliques. Note that the shortest path may
also run through nodes not part of the n-clique, such that the diameter of an
n-clique may be larger than n. An n-clan denotes an n-clique with diameter
less or equal to n. Naturally, all n-clans are also n-cliques. Alternatively, an
n-club is a maximal subgraph of diameter n.

These definitions are problematic in several ways. Cliques can never get
larger than the smallest degree among the member nodes which limits these
communities to be generally very small in large networks with limited degrees.
The other definitions relying on distances are problematic if the network pos-
sesses the small world property. The overlap of such communities will generally
be as large as a typical group.

Another group of definitions is based on the degree of the members of a
community. A k-plex is a maximal subgraph of n nodes, such that each member
has at least n − k connections to other nodes in the k-plex. This definition is
less strict than that of a clique as it allows some links to be missing. At the
same time, a k-plex only contains nodes with minimum degree d ≥ (n − k).
A k-core denotes a maximal subgraph, such that each node has at least k
connections to other members of the k-core.

Here again, the size of k-plexes is limited by the degrees of the nodes.
K-cores are problematic also because they disregard all nodes with degree
smaller than k even if they have all their connections to nodes within this
core.

While the two former groups of definitions are based primarily on internal
connections, a number of definitions of cohesive subgroups exist which com-
pare intra- and inter-group connections. One example are LS sets. A set of n
nodes is an LS set, if each of its proper subsets has more ties to its complement
than to the rest of the network.

The problem with this definition may be studied with an example. Assume
a clique of 10 nodes in a large network. Each of the members of this clique
has only 1 link to the rest of the network. This is not an LS set, because 9
of the 10 nodes taken together have 9 links to the complement in the set and
also 9 links to the rest of the network. This is indeed a paradoxical situation,
as every node has 9 out of 10 links to other members of the same set of nodes.

It should be noted that while nodes may be part of several n-cliques, n-
clubs or n-clans, i.e., these sets may overlap, LS sets are either disjoint or one
contains the other and they hence induce a hierarchy of communities in the
graph [11].

Yet an alternative definition of a cohesive subgroup is the following. If
the edge connectivity λ(i, j) of two nodes i and j is defined as the minimum
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number of links that must be removed from the graph to leave nodes i and j
disconnected, then a λ set denotes a maximal subgraph, such that λ(i, j) >
λ(i, k) for all nodes i,j which are members of the λ set and all nodes k which
are not members of it.

For the lambda sets, again one has the problem that nodes of low degree,
though having all of their connections with the community, may not belong
to it.

2.3.2 Definitions from Physicists

The diversity of definitions from sociology already indicates the conceptual
difficulties involved and demonstrates that the question of what a community
is may not have a simple answer. To make things worse, a number of alter-
native definitions have been and continue to be contributed by physicists as
well [19, 20].

Radicchi et al. [21] have introduced the notion of community in a strong
sense and in a weak sense. For a subgraph V of G to be a community in the
strong sense, they require

kin
i > kout

i ∀ i ∈ V, (2.1)

i.e., the number of internal connections kin
i to other members of V shall be

larger than the number of external connections kout
i to the rest of the network.

Note that kin
i + kout

i = ki, the degree of node i. Relaxing this condition, for a
subgraph V to be a community in a weak sense they require

∑

i∈V

kin
i >

∑

i∈V

kout
i . (2.2)

A paradoxical issue arising from both of these definitions is that communities
in the strong or weak sense can be formed of disconnected subgraphs as long
as these subgraphs also obey the definition. It should be noted, however,
that this definition was initially proposed as a stop criterion for hierarchical
agglomerative or divisive clustering algorithms.

Palla et al. [8, 22] have given an alternative definition based on reachabil-
ity, though defined through a clique percolation process and not via paths in
the network. Two k-cliques are adjacent if they share a (k−1)-clique, i.e., they
differ by only one node. Note that the term k-cliques here denotes complete
subgraphs with k nodes. As a community or k-clique percolation cluster, they
define the set of nodes connected by (k−1)-cliques. An example will clarify
these issues. Two vertices connected by an edge form a 2-clique. Two triangles
(3-cliques) are adjacent if they share an edge, i.e., a 2-clique. This definition
allows nodes to be part of more than one community and hence allows for
overlap among communities much like the other definitions based on reacha-
bility.

Other approaches given by physicists and computer scientists are algorith-
mically motivated. The next section will discuss this treatment of the problem.
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2.4 Algorithms for Community Detection

One may ask how it shall be possible to design a community detection algo-
rithm without a precise definition of community. The answer is that for many
networks the community structure is known from other sources and the rea-
soning is that any algorithm, which is good at discovering known community
structures, will be good at finding unknown ones as well. A number of real
world data sets have become almost standard for this purpose and will be
discussed in the following chapters and later sections.

In addition to real world networks with known community structure it
has become customary to compare the performance of community detection
algorithms on computer-generated test networks with known communities.
The standard example is the following: Given is a graph with 128 nodes,
divided into 4 communities of 32 nodes each. The degree distribution is chosen
to be Poissonian with an average of 〈k〉 = 16. The links of every node are
divided into those that connect to other members of the same community and
those connecting to the rest of the network, such that

〈k〉 = 〈kin〉 + 〈kout〉. (2.3)

Otherwise, the network is completely random. For fixed 〈k〉, recovering the
built-in community structure becomes more difficult as 〈kout〉 increases at the
expense of 〈kin〉. It has become customary to study the performance of an
algorithm as a function of 〈kin〉.

2.4.1 Comparing a Quality Function

Instead of comparing the output of an algorithm for networks with known
community structure one may compare the results of different algorithms
across a quality function for the assignment of nodes into communities. New-
man and Girvan [23] have proposed the following measure of the “modularity”
of a community structure with q groups:

Q =
q∑

s=1

ess − a2
s, with as =

q∑

s=1

ers. (2.4)

Here, ers is the fraction of all edges that connect nodes in groups r and s and
hence ess is the fraction of edges connecting the nodes of group s internally.
From this, one finds that as represents the fraction of all edges having at least
one end in group s and a2

s is to be interpreted as the expected fraction of links
falling between nodes of group s given a random distribution of links. Note
the similarity of this measure with the assortativity coefficient defined earlier.
It is clear that −1 < Q < 1.

This modularity measure will play a central role in the following chapters
and it is of course a natural idea to optimize the assignment of nodes in
communities directly by maximizing the modularity of the resulting partition.



22 2 Standard Approaches to Network Structure: Block Modeling

2.4.2 Hierarchical Algorithms

A large number of heuristic algorithmic approaches to community detection
have been proposed by computer scientists. The developments follow gener-
ally along the lines of the algorithms developed for multivariate data [24–26].
Typically, the problem is approached by a recursive min-cut technique that
partitions a connected graph into two parts minimizing the number of edges to
cut [27, 28]. These treatments, however, suffer greatly from being very skewed
as the min-cut is usually found by cutting off only a very small subgraph [29].
A number of penalty functions have been suggested to overcome this problem
and balance the size of subgraphs resulting from a cut. Among these are ratio
cuts [29, 30], normalized cuts [31] or min–max cuts [32].

The clustering algorithm devised by Girvan and Newman (GN) [17] was
the first to introduce the problem of community detection to physics re-
searchers in the field of complex networks. As is often the case, the impact the
paper created was not merely for the algorithm but because of the well-chosen
illustrative example of its application. GN’s algorithm is based on “edge be-
tweenness” – a concept again borrowed from sociology. Given all geodesic
paths between all pairs of nodes in the network, the betweenness of an edge
is the number of such paths that run across it. It is intuitive that between-
ness is a measure of centrality and hence introduces a measure of distance to
the graph. The GN algorithm calculates the edge betweenness for all edges
in the graph and then removes the edge with the highest betweenness. Then,
the betweenness values for all edges are recalculated. This process is repeated
until the network is split into two disconnected components and the procedure
starts over again on each of the two components until only single nodes remain.
The algorithm falls into the class of recursive partitioning algorithms and its
output is generally depicted as a dendrogram illustrating the progression of
splitting the network.

Figure 2.5 illustrates the algorithm with the example chosen by GN [17].
The network shown displays the friendships among the members of a karate
club at a US university compiled by the anthropologist Zachary [18] over
a period of 2 years. Over the course of the observation an internal dispute
between the manager (node 34) and the instructor of the club (node 1) led to
the split up of the club. Roughly half of the members joined the instructor in
the formation of a new club and the other half of the members stayed with
the manager hiring a new instructor. It turns out that the first split induced
by the GN algorithm corresponds almost exactly to the observed split among
the members of the club. This led to the conclusion that the split could be
“predicted” from the topology of the network and that the GN algorithm
is able to make such predictions. As far as the definition of community is
concerned, the algorithm induces a hierarchy of communities as at any level
of progress of the algorithm a set of connected nodes is to be understood as
a community.
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Fig. 2.5. Left: The karate club network due to Zachary [18]. The circles denote
members who sided with the manager, while the squares denote members siding
with the instructor in the split observed by Zachary. Right: The dendrogram output
by the GN algorithm. Note that the first split of the algorithm corresponds almost
exactly the split observed. Both figures from [17].

The main problem of the GN algorithm is its high demand of computa-
tional resources running in O(N3) steps for networks with N nodes. Also, it
is not clear at which level in the dendrogram a cut is best. The algorithm is
completely deterministic and therefore error prone in case of noisy data and
possible alternative community structures cannot be found.

A solution to the latter problem was suggested by Tyler et al. [7, 33]. In-
stead of calculating the edge betweenness from all shortest paths between all
pairs of nodes, they merely sample the edge betweenness by calculating the
edge betweenness between randomly chosen pairs of nodes. This reduces the
computational complexity drastically, since instead of calculating the shortest
paths between O(N2) pairs of vertices, only a fraction of them needs to be
sampled. Repeating the entire process, the algorithm then aggregates nodes
into communities which are repeatedly in the same connected component in
very late stages of the partitioning. This modification is intended to address
the problem that the GN algorithm is deterministic, i.e., it is capable of pro-
ducing only one output given a data set and an estimation of the stability of
the community assignment with respect to the removal or addition of single
links cannot be easily evaluated.

Newman has also introduced a measure of edge betweenness centrality
based on random walks [34], i.e., the edge betweenness is interpreted as the
number of times it is traversed by a random walker. This measure can be used
for community detection in the same way as the shortest path betweenness.

In a similar and elegant way, Wu and Huberman have proposed a method
to calculate the betweenness through an analogy with a resistor network [35].
The network is viewed as a resistor network, the edges being the resistors,
and the betweenness of an edge is estimated from the voltage drop across the
resistor when a voltage is applied between two randomly chosen connector
nodes. Of course, those resistors which have few resistors in parallel will show
the largest voltage drop corresponding to the largest betweenness. The volt-
age drops are sampled for a number of randomly chosen pairs of connector
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vertices and then the edge which experiences the largest average voltage drop
is removed and the process starts again. Wu and Huberman were the first to
acknowledge the need for a method to find a community around a given node.
Given the start node, they measure the voltage drop between this start node
and randomly selected test nodes in the rest of the network and then cut the
network around the start node at the edges of the highest voltage drop.

Radicchi et al.’s [21] definition of communities in the strong and weak sense
was originally intended to provide a stop criterion for hierarchical community
detection algorithms. As an example, the GN algorithm should be stopped
when the next split would result in groups of nodes that do not comply to
the definitions given by Radicchi et al. In order to speed up the calculation of
betweenness, Radicchi et al. also present an approximation method. From the
observation that edges with high betweenness generally have few alternative
paths, they define the edge clustering coefficient as

cij =
zij + 1

min(ki − 1, kj − 1)
. (2.5)

Here zij denotes the number of triangles above the edge connecting nodes i and
j. Edges for which either ki or kj is zero are excluded from consideration. Their
algorithm then consists in successively removing the edges with lowest edge
clustering corresponding to those with highest betweenness. Note that this
algorithm strongly depends on the existence of triangles. It may be extended to
other loops, but keep in mind that the small world property of many networks
makes such extension computationally costly.

Another way of determining when to stop a recursive partitioning algo-
rithm is to assess the network modularity Q at every split and accept a split
only when the split results in an increase of the modularity Q, since for the
whole network as one community Q = 0, there always exists one split which
increases Q. Equivalently, one can assign a different community index to ev-
ery node and then successively join those pairs of nodes or groups of nodes
which lead to the largest increase in Q. This is the idea behind the algorithm
presented by Clauset et al. [36]. While the other algorithms presented so far
are hierarchical divisive algorithms, this one starts from the bottom-up in an
agglomerative manner.

A hierarchical approach based on a dynamical system has been suggested
by Arenas et al. [37]. They study the time development of the synchroniza-
tion process of phase-coupled so-called Kuramoto oscillators. Oscillators are
placed on the nodes on the networks and initialized with random phases. The
couplings are determined via the links of the network. Densely interconnected
groups of oscillators tend to synchronize first and therefore the community
structure and its hierarchy can be inferred from studying the matrix of phase
correlations as the system progresses from a completely uncorrelated to a
completely correlated state when all oscillators are in phase.

The idea to study a dynamical system on a data set for clustering pur-
poses was first introduced by Blatt et al. [38–40]. They studied the spin–spin
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correlation of a ferromagnetic Potts model during a simulated cooling process
from the paramagnetic state to the complete ferromagnetic state. Clusters are
interpreted as groups of spins which are highly correlated.

Both of the algorithms based on dynamical systems may be run on large
systems as the interactions are defined only along the sparse connections of
the network. However, they require a full N ×N correlation matrix to be kept
in memory which makes them impractical for very large systems.

In total, all hierarchical algorithms suffer from the fact that a community
needs to be understood as something output by the algorithm and hence the
definition of what a community is depends on the particular choice of rule
to remove an edge, join nodes to communities or on the dynamical system
studied. One may use an external definition of community in order to decide
where to best cut the dendrogram. Then, however, it is not clear whether
the algorithm chosen really does optimize this quality measure. Further, all
hierarchical algorithms imply the existence of a community structure at all
levels of detail from single nodes to the whole network. There is no true inter-
pretation of overlap other than what results from ad hoc introduced sampling
procedures.

2.4.3 Semi-hierarchical

The hierarchical methods cited so far assume a nested hierarchy of communi-
ties. One of the few methods which allow for overlapping communities is the
clique percolation method of Palla et al. [8, 22] which was introduced already.
Even though the method allows a node to be part of more than one commu-
nity, communities resulting from k +1-clique percolation processes are always
contained within k-clique communities. It is never possible that the nodes
contained in the overlap of two communities form their own community. An-
other problem of this method is its dependence on the existence of triangles
in the network. Nodes which are not connected via triangles to communities
can never be part of such communities and only nodes with at least k−1 links
can be part of a k-clique at all. Also, this method may be easily mislead by
the addition or removal of single links in the network, as a single link may be
responsible for the joining of two communities into one. Clearly, this situation
is unsatisfactory in case of noisy data.

2.4.4 Non-hierarchical

The non-hierarchical methods approach the problem from a different perspec-
tive. In principle, they intend to calculate a full distance matrix for the nodes
of the network. This can then be treated by conventional techniques.

One of the earliest approaches to community detection is due to Eriksen
et al. [41, 42]. They study a diffusion process on a network and analyze the
decay of the modes of the following diffusive system with discrete time:
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ρi(t + 1) − ρi(t) =
∑

j

(Tij − δij)ρj(t). (2.6)

Here Tij represents the adjacency matrix of the network such that Tij = 1/kj

for Aij = 1 and zero otherwise. Hence Tij represents the probability of a
random walker to go from j to i. The decay of a random initial configura-
tion ρ(t = 0) toward the steady state is characterized by the eigenmodes
of the transition matrix Tij . The eigenvectors corresponding to the largest
eigenvalues can then be used to define a distance between nodes which helps in
identifying communities. To do this, the eigenvectors belonging to the largest
non-trivial positive eigenvalues are plotted against each other. This diffusion
approach is very similar in spirit to other algorithms based on the idea of
using flow simulations for community detection as suggested by van Dongen
[43] under the name of “Markov clustering” (MCL).

The method presented by Zhou [44–46] first converts the sparse adjacency
matrix of the graph into a full distance matrix by calculating the average time
a Brownian particle needs to move from node i to j. Then this distance matrix
is clustered using ordinary hierarchical clustering algorithms. This approach
is based on the observation that a random walker has shorter traveling time
between two nodes if many (short) alternative paths exist.

Another spectral approach has been taken by Muños and Donetti [47].
They work with the Laplacian matrix of the network. The Laplacian is defined
as

Lij = kiδij − Aij . (2.7)

Otherwise, the method proposed is similar to Ref. [41]. Plotting the non-
trivial eigenvectors against each other gives a low-dimensional representation
of a distance measure of the network on top of which a conventional clustering
procedure then needs to operate.

Though these methods are able to recover known community structures
with good accuracy, they suffer from being less intuitive. Communities found
can only be interpreted with respect to the particular system under study, be
it a diffusive system or the eigen vectors of the Laplacian matrix. Problematic
is also that there is no local variant of these methods, i.e., there is no way to
find the community around a given node using spectral methods.

2.4.5 Optimization Based

A different approach which is reminiscent of the parametric clustering pro-
cedures known in computer science is the idea of searching for partitions
with maximum modularity Q using combinatorial optimization techniques
[48]. This approach has been adopted by Guimera et al. in Refs. [2, 49] or
Massen et al. [50] using simulated annealing [51] or Duch and Arenas using
extremal optimization [52].

Though this approach will be the preferred one for the remainder of this
book, a number of issues remain. For the hierarchical algorithms, a community
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was to be understood as whatever the algorithm outputs. Now, it is not the
algorithm that defines what a community is, but the quality function, i.e.,
the modularity Q in this case. Also, the modularity Q as defined by Newman
[23] is parameter free and an understanding for hierarchical and overlapping
structures needs to be developed.

2.5 Conclusion

Block structure in networks is a very common and well-studied phenomenon.
The concepts of structural and regular equivalence as well as the types of
blocks defined for generalized block modeling are well defined but appear too
rigid to be of practical use for large and noisy data sets. Diagonal block models
or modular structures have received particular attention in the literature and
have developed into an almost independent concept of cohesive subgroups or
communities. The comparison of many different community definitions from
various fields has shown that the concept of module or community in a net-
work is only vaguely defined. The diversity of algorithms published is only a
consequence of this vague definition. None of the algorithms could be called
“ideal” in the sense that it combines the features of computational efficiency,
accuracy, flexibility and adaptability with regard to the network and easy
interpretation of the results. More importantly, none of the above-cited publi-
cations allows an estimation to which degree the community structure found
is a reality of the network or a product of the clustering process itself. The fol-
lowing chapters are addressing these issues and present a framework in which
community detection is viewed again as a special case of a general procedure
for detecting block structure in networks.
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topological scales in complex networks. Physical Review Letters, 96:114102,
2006. 24

38. M. Blatt, S. Wiseman, and E. Domany. Super-paramagnetic clustering of data.
Physical Review Letters, 76:3251–3254, 1996. 24

39. S. Wiseman, M. Blatt, and E. Domany. Super-paramagnetic clustering of data.
Physical Review E, 57, 3767, 1998. 24

40. E. Domany. Cluster analysis of gene expression data. Journal of Statistical
Mechanics, 110(3–6):1117–1139, 2003. 24

41. K. A. Eriksen, I. Simonsen, S. Maslov, and K. Sneppen. Modularity and ex-
treme edges of the internet. Physical Review Letters, 90(14), 148701, 2003. 25, 26

42. I. Somonsen, K. A. Eriksen, S. Maslov, and K. Sneppen. Diffusion on complex
networks: a way to probe their large scale topological structures. Physica A,
336:163, 2004. 25

43. S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, The Netherlands, 2000. 26

44. H. Zhou. Distance, dissimilarity index, and network community structure.
Physical Review E, 67: 067907, 2003 26

45. H. Zhou and R. Lipowsky. Network Brownian Motion: A New Method to Mea-
sure Vertex-Vertex Proximity an to Identify Communities and Subcommunities,
pp. 1062–1069. Springer-Verlag, Berlin Heidelberg, 2004. 26

46. H. Zhou. Network landscape from a brownian particle’s perspective. Physical
Review E, 67:041908, 2003. 26

47. L. Donetti and M. A. Munoz. Detecting network communities: a new and
systematic approach. Journal of Statistical Mechanics: Theory and Experiment,
P10012, 2004. 26

48. C. H. Papadimitriou. Combinatorial Optimization: Algorithms and Complexity.
Dover Publications, New York, 1998. 26

49. R. Guimera, M. Sales-Pardo, and L. N. Amaral. Modularity from fluctuations
in random graphs and complex networks. Physical Review E, 70:025101(R),
2004. 26



30 2 Standard Approaches to Network Structure: Block Modeling

50. C. P. Massen and J. P. K. Doye. Identifying communities within energy land-
scapes. Physical Review E, 71:046101, 2005. 26

51. S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983. 26

52. J. Duch and A. Arenas. Community detection in complex networks using ex-
tremal optimization. Physical Review E, 72:027104, 2005. 26



3

A First Principles Approach to Block
Structure Detection

3.1 Mapping the Problem

Common to all of the before-mentioned approaches is their attempt to dis-
cover patterns in the link structure of networks. Patterns were either block
structures in the adjacency matrix or – more specifically – cohesive subgroups.
We will try to define a quality function for block structure in networks and
optimize the ordering of rows and columns of the matrix as to maximize the
quality of the blocking. The search for cohesive subgroups will prove to be
a special case of this treatment. It makes sense to require that our quality
function will be independent of the order of rows and columns within one
block. It will depend only on the assignment of nodes, i.e., rows and columns,
into blocks. Finding a good assignment into blocks is hence a combinatorial
optimization problem. In many cases, it is possible to map such a combina-
torial optimization problem onto minimizing the energy of a spin system [1].
This approach had been suggested for the first time by Fu and Anderson in
1986 [2] in the context of bi-partitioning of graphs and it has been applied
successfully to other problems such as vertex cover [3], k-sat [4], the traveling
salesmen [5] and many others as well.

Before introducing such a quality function, it is instructive to leave the
field of networks for a moment and take a detour into the dimensionality
reduction of multivariate data.

3.1.1 Dimensionality Reduction with Minimal Squared Error

Suppose we are given a set of real valued measurements of some objects. As an
example, for all boats in a marina, we measure length over all, width, height
of the mast, the area of the sail, power of the engine, length of the waterline,
and so forth. Let N be the number of measurements, i.e., the number of boats
in the marina, and let the measurements be vectors of dimension d, i.e., the
number of things we have measured. We compile our measurements into a
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data matrix A ∈ R
N×d, i.e., we write the individual measurement vectors as

the rows of matrix A. Let us further assume that we have already subtracted
the mean across all measurements from each individual sample such that the
columns of A sum to zero, i.e., we have centered our data.

Now we see that AT A is a d × d matrix describing the covariance of the
individual dimensions in which we measured our data.

We now ask if we can drop some of the d dimensions and still describe
our data well. Naturally, we want to drop those dimensions in which our data
do not vary much or we would like to replace two dimensions which are cor-
related by a single dimension. We can discard the unnecessary dimensions
by projecting our data from the d-dimensional original space in a lower di-
mensional space of dimension q < d. Such a projection can be achieved by a
matrix V ∈ R

d×q. Taking measurement ai ∈ R
d from row i of A, we find the

coordinates in the new space to be bi = aiV with bi ∈ R
q. We can also use

the transpose of V to project back into the original space of dimension d via
a′
i = biVT . Since in the two projections we have visited a lower dimensional

space, we find that generally the reconstructed data point does not coincide
with the original datum aiVVT = a′

i �= ai.
However, if we would have first started in the q-dimensional space with

bi and projected it into the d-dimensional space via VT and then back again
via V we require that our projection does not lose any information and hence
biVT V = bi. This means that we require VT V = 1 or in other words we
require that our projection matrix V be unitary.

The natural question is now how to find a unitary matrix such that it
minimizes some kind of reconstruction error. Using the mean square error, we
could write

E ∝
N∑

i

d∑

j

(A − A′)2ij =
N∑

i

d∑

j

(A − AVVT)2ij (3.1)

= Tr(A − AVVT )T (A − AVVT ). (3.2)

The new coordinates that we project our data onto are called “principal com-
ponents” of the data set and the technique of finding them is known as “prin-
cipal component analysis” or PCA for short. Already at this point, we can
mention that the q columns of V must be made of the eigenvectors belong-
ing to the largest q eigenvalues of AT A. To show this, we discuss a slightly
different problem, solve it and then show that it is equivalent to the above.

Consider the singular value decomposition (SVD) of a matrix of A ∈ R
N×d

into a unitary matrix U ∈ R
N×N , a diagonal matrix S ∈ R

N×d (in case
N �= d there are maximally min(N, d) non-zero entries, the number of non-
zero entries in S is the rank of A) and another unitary matrix V ∈ R

d×d

such that A = USVT and S = UT AV. The entries on the diagonal of S
are called singular values. We will assume that they are ordered decreasing
in absolute value. It is straightforward to see some of the properties of this
SVD: UT A = SVT and AV = US follow from the U and V being unitary.
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In the same fashion, we have AAT = USST UT and AT A = VST SVT which
means that U diagonalizes AAT and V diagonalizes AT A with the same
eigenvalues.

Now consider the matrix A′ = US′VT where S′ differs from S in that
we have kept only the q largest (in absolute value) entries in S. That is, we
construct a rank q approximation to A. How does A′ differ from A? The
quadratic error now reads

E ∝
N∑

i

d∑

j

(A − A′)2ij = Tr(A − A′)T (A − A′) (3.3)

= Tr(UT AV − UT A′V)T (UT AV − UT A′V)
= Tr(S − S′)T (S − S′)

=
min(N,d)∑

r=q+1

S2
rr. (3.4)

Trivially, choosing q = min(N, d) would make this error zero. However,
it can be shown that this choice of constructing A′ is also the best possible
choice of approximating A by a matrix of rank q under the squared error
function.

Now going back to PCA, we see that the term AVVT in (3.2) corresponds
just to AVVT = US′VT from the SVD which means that the minimal recon-
struction error is obtained via the d × q matrix V, the columns of which are
the right singular vectors of A corresponding to the q largest singular values
or the eigenvectors of AT A corresponding to the q largest eigenvalues.

What we learn from these considerations is that very simple and well
understood algebraic techniques exist to minimize the squared error when
reducing the dimensionality of a multivariate data set. We will argue, however,
that this is not necessarily a good error function for networks and will hence
try to give a better one. The price we will have to pay for this will be a higher
computational cost for minimizing this error.

3.1.2 Squared Error for Multivariate Data and Networks

Let us consider in the following the reconstruction of the adjacency matrix of a
network A ∈ {0, 1}N×N of rank r by another adjacency matrix B ∈ {0, 1}N×N

possibly of lower rank q < r as before. For the squared error we have

E =
∑

ij

(A − B)2ij . (3.5)

Then, there are only four different cases we need to consider in Table 3.1.
The squared error gives equal value to the mismatch on the edges and missing
edges in A. We could say it weighs every error by its own magnitude. While
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Table 3.1. The error matrix of the quadratic error (3.5). Each error is weighted
by its own magnitude. Making a mistake in matching an edge in A is as bad as
mismatching a missing edge in A.

�����Aij

Bij
1 0

1 0 1
0 1 0

this is a perfectly legitimate approach for multivariate data, it is, however,
highly problematic for networks. The first reason is that many networks are
sparse. The fraction of non-zero entries in A is generally very, very small
compared to the fraction of zero entries. A low rank approximation under
the squared error will retain this sparsity to the point that B may be com-
pletely zero. Furthermore, we have seen that real networks tend to have a very
heterogeneous degree distribution, i.e., the distribution of zeros and ones per
row and column in A is also very heterogeneous. Why give every entry the
same weight in the error function? Most importantly, for multivariate data,
all entries of Aij are equally important measurements in principle. For net-
works this is not the case: the edges are in principle more important than
the missing edges. There are fewer of them and they should hence be given
more importance than missing edges. Taken all of these arguments together,
we see that our first goal will have to be the derivation of an error function
specifically tailored for networks that does not suffer from these deficiencies.

3.2 A New Error Function

We already said that we would like to use a statistical mechanics approach.
The problem of finding a block structure which reflects the network as good
as possible is then mapped onto finding the solution of a combinatorial op-
timization problem. Trying to approximate the adjacency matrix A of rank
r by a matrix B of rank q < r means approximating A with a block model
of only full and zero blocks. Formally, we can write this as Bij = B(σi, σj)
where B(r, s) is a {0, 1}q×q matrix and σi ∈ {1, ..., q} is the assignment of
node i from A into one of the q blocks. We can view B(r, s) as the adjacency
matrix of the blocks in the network or as the image graph discussed in the
previous chapter and its nodes represent the different equivalence classes into
which the vertices of A may be grouped. From Table 3.1, we see that our
error function can have only four different contributions. They should

1. reward the matching of edges in A to edges in B,
2. penalize the matching of missing edges (non-links) in A to edges in B,
3. penalize the matching of edges in A to missing edges in B and
4. reward the matching of missing edges in A to edges in B
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These four principles can be expressed via the following function:

Q ({σ},B) =
∑

ij

aij AijB(σi, σj)
︸ ︷︷ ︸
links to links

−
∑

ij

bij (1 − Aij)B(σi, σj)
︸ ︷︷ ︸
non-links to links

−
∑

ij

cij Aij(1 − B(σi, σj))
︸ ︷︷ ︸
links to non-links

+
∑

ij

dij (1 − Aij)(1 − B(σi, σj))
︸ ︷︷ ︸
non-links to non-links

,

(3.6)

in which Aij denotes the adjacency matrix of the graph with Aij = 1, if
an edge is present and zero otherwise, σi ∈ {1, 2, ..., q} denotes the role or
group index of node i in the graph and aij , bij , cij , dij denote the weights
of the individual contributions, respectively. The number q determines the
maximum number of groups allowed and can, in principle, be as large as N ,
the number of nodes in the network. Note that in an optimal assignment of
nodes into groups it is not necessary to use all group indices as some indices
may remain unpopulated in the optimal assignment.

We will not restrict our analysis to a particular type of network. If the
network is directed, the matrix A is asymmetric. If the network is weighted,
we assume A to represent the {0, 1} adjacency structure and w ∈ R

N×N
+

to hold the weights of the links in A. Naturally, we have wij = Aij in case
of unweighted networks. The extension to bipartite networks, i.e., adjacency
matrices A which are not square anymore, is straightforward as well.

In principle, (3.6) is formally equivalent to the Hamiltonian of a q-state
Potts model [6]. However, the spin interaction is governed by B(σi, σj) which
is more general than the standard Potts model B(σi, σj) = δ(σi, σj). The
couplings between the spins are derived from the (weighted) adjacency matrix
of the graph. The spin state of a node serves as a block index, such that nodes
in the same spin state belong to the same block. The ground state, or the
spin configuration with minimal energy, will then be equivalent to an optimal
assignment of nodes into blocks according to the error function.

It is natural to weigh the links and non-links in A equally, regardless of
whether they are mapped onto edges or missing edges in B, i.e., aij = cij and
bij = dij . It remains to find a sensible choice of weights aij and bij , preferably
such that the contribution of links and non-links can be adjusted through a
parameter. The aij measure the contribution of the matching of edges while
the bij measure the contribution of the matching of missing edges. From our
discussion of the squared error, we have seen that this should somehow com-
pensate the sparsity of the networks. A convenient way to achieve this is
setting aij = wij − bij . Then, a natural condition is that the total amount
of “quality” that can possibly be contributed by links and non-links, respec-
tively, should be equal. In other words

∑
ij Aijaij =

∑
ij(1−Aij)bij . This also

means that
∑

ij wijAij =
∑

ij bij . In case we would like to tune the influence
of edges and missing edges by a parameter γ, it is convenient to introduce it
as bij = γpij with the restriction that

∑
ij wijAij =

∑
ij pij . Here, we have
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introduced pij merely as a penalty we give to matching missing edges in A
to edges in B. However, from

∑
ij wijAij =

∑
ij pij we may also interpret

pij as a measure for the probability that nodes i and j are connected or – in
general – for the expected weight between them. We will discuss this point
further later on. Finally, for parameter values of γ = 1 we give equal total
weights to edges and missing edges, whereas values of γ smaller or greater
than one give more total weight to edges or missing edges, respectively. Then
we can write (3.6) as

Q ({σ},B) =
∑

ij

(wijAij − γpij)B(σi, σj)

−
∑

ij

(wijAij − γpij)(1 − B(σi, σj)). (3.7)

In (3.7) we note that the term
∑

ij(wijAij − γpij) does not depend on the
block model B(r, s) or on the assignment of nodes into blocks {σ}. Hence, the
matrix B(r, s) and the assignment of {σ} which maximize the first term of
(3.7) will also minimize the second. It is thus enough to optimize only one of
the two terms.

Let us derive our quality function in a different way. Similar to (3.5) we
could write as an error function

E =
N∑

ij

(A − B)ij(w − γp)ij (3.8)

=
N∑

ij

(w − γp)ijAij

︸ ︷︷ ︸
Optimal Fit

−
N∑

ij

(w − γp)ijB(σi, σj).

︸ ︷︷ ︸
Approximate Fit

(3.9)

(3.10)

Note how the different types of errors are weighted differently. Compare
Table 3.2 with Table 3.1 to emphasize this difference again. We see imme-
diately that the second part of the error function (3.10) corresponds to the
first part of our quality function (3.7). We can interpret the error as a dif-
ference of an optimal fit achieved when Aij = B(σi, σj) and the approximate

Table 3.2. The error matrix of the linear error (3.10). Each type of error is weighted
by its own weight. Making a mistake in matching an edge in A is worse than
mismatching a missing edge in A.

�����Aij

Bij
1 0

1 0 wij − γpij

0 γpij 0
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fit that we achieve for a given B(r, s) and assignment of nodes into groups
σi. It is worth noting that both B(r, s) = 1 and B(r, s) = 0 for all r, s lead
to the same error value for γ = 1. Further, the error function is maximal, if
Bσi,σj

= 1 − Aij , i.e., exactly complementary to Aij .

3.2.1 Fitting Networks to Image Graphs

The above-defined quality and error functions in principle consist of two parts.
On one hand, there is the image graph B and on the other hand, there is
the mapping of nodes of the network to nodes in the image graph, i.e., the
assignment of nodes into blocks, which both determine the fit. Given a network
A and an image graph B, we could now proceed to optimize the assignment of
nodes into groups {σ} as to optimize (3.6) or any of the derived forms. This
would correspond to “fitting” the network to the given image graph. This
allows us to compare how well a particular network may be represented by a
given image graph. We will see later that the search for cohesive subgroups is
exactly of this type of analysis: If our image graph is made of isolated vertices
which only connect to themselves, then we are searching for an assignment of
nodes into groups such that nodes in the same group are as densely connected
as possible and nodes in different groups as sparsely as possible. However,
ultimately, we are interested also in the image graph which best fits to the
network among all possible image graphs B. In principle, we could try out
every possible image graph, optimize the assignment of nodes into blocks
{σ} and compare these fit scores. This quickly becomes impractical for even
moderately large image graphs. In order to solve this problem, it is useful to
consider the properties of the optimally fitting image graph B if we are given
the networks plus the assignment of nodes into groups {σ}.

3.2.2 The Optimal Image Graph

We have already seen that the two terms of (3.7) are extremized by the same
B(σi, σj). It is instructive to introduce the abbreviations

mrs =
∑

ij

wijAijδ(σi, r)δ(σj , s) and (3.11)

[mrs]pij
=
∑

ij

pijδ(σi, r)δ(σj , s), (3.12)

and write two equivalent formulations for our quality function:

Q1 ({σ},B) =
∑

r,s

(
mrs − γ[mrs]pij

)
B(r, s) and (3.13)

Q0 ({σ},B) = −
∑

r,s

(
mrs − γ[mrs]pij

)
(1 − B(r, s)). (3.14)
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Now the sums run over the group indices instead of nodes and mrs denotes
the number of edges between nodes in group r and s and [mrs]pij

is the sum
of penalties between nodes in group r and s. Interpreting pij indeed as a
probability or expected weight, the symbol [·]pij

denotes an expectation value
under the assumption of a link(weight) distribution pij , given the current
assignment of nodes into groups. That is, [mrs]pij

is the expected number
(weight) of edges between groups r and s. The equivalence of maximizing
(3.13) and minimizing (3.14) shows that our quality function is insensitive
to whether we optimize the matching of edges or missing edges between the
network and the image graph.

Let us now consider the properties of an image graph with q roles and a
corresponding assignment of roles to nodes which would achieve the highest Q

across all image graphs with the same number of roles. From (3.13) and (3.14)
we find immediately that for a given assignment of nodes into blocks {σ} we
achieve that Q is maximal only when Brs = 1 for every (mrs − [mrs]) > 0 and
Brs = 0 for every (mrs−[mrs]) < 0. This means that for the best fitting image
graph, we have more links than expected between nodes in roles connected in
the image graph. Further, we have less links than expected between nodes in
roles disconnected in the image graph.

This suggests a simple way to eliminate the need for a given image graph
by considering the following quality function:

Q({σ}) =
1
2

∑

r,s

‖mrs − γ[mrs]‖. (3.15)

The factor 1/2 enters to make the scores of Q, Q0 and Q1 comparable. From
the assignment of roles that maximizes (3.15), we can read off the image graph
simply by setting

Brs = 1, if (mrs − γ[mrs]) > 0 and (3.16)
Brs = 0, if (mrs − γ[mrs]) ≤ 0. (3.17)

3.2.3 Maximum Value of the Fit Score

The function (3.15) is monotonously increasing with the number of possible
roles q until it reaches its maximum value Qmax

Qmax =
∑

ij

(wijAij − γpij)Aij . (3.18)

This value can be achieved when q equals the number of structural equivalence
classes in the network, i.e., the number of rows/columns which are genuine
in A. The optimal assignment of roles {σ} is then simply an assignment into
the structural equivalence classes. For fewer roles, this allows us to compare
Q/Qmax for the actual data and a randomized version and to use this com-
parison as a basis for the selection of the optimal number of roles in the image
graph in order to avoid overfitting the data.
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A comparison of the image graphs and role assignments found indepen-
dently for different numbers of roles may also allow for the detection of possible
hierarchical or overlapping organization of the role structure in the network.

3.2.4 Choice of a Penalty Function and Null Model

We have introduced pij as a penalty on the matching of missing links in A
to links in B. As such, it can in principle take any form or value that may
seem suitable. However, we have already hinted at the fact that pij can also
be interpreted as a probability. As such, it provides a random null model
for the network under study. The quality functions (3.13), (3.13) and (3.15)
then all compare distribution of links as found in the network for a given
assignment of nodes into blocks to the expected link (weight) distribution if
links (weight) were distributed independently of the assignment of nodes into
blocks according to pij . Maximizing the quality functions (3.13), (3.13) and
(3.15) hence means to find an assignment of nodes into blocks such that the
number (weight) of edges in blocks deviates as strongly as possible from the
expectation value due to the random null model.

Two exemplary choices of link distributions or random null models shall
be illustrated. Both fulfill the constraint that

∑
ij wijAij =

∑
ij pij . The sim-

plest choice is to assume every link equally probable with probability pij = p
independent from i to j. Writing

pij = p =
∑

kl wklAkl

N2
(3.19)

leads naturally to
[mrs]p = pnrns, (3.20)

with nr and ns denoting the number of nodes in group r and s, respectively.
A second choice for pij may take into account that the network does exhibit

a particular degree distribution. Since links are in principle more likely be-
tween nodes of high degree, matching links between high-degree nodes should
get a lower reward and mismatching them a higher penalty. One may write

pij =
(
∑

k wikAik)(
∑

l wljAlj)∑
kl wklAkl

=
kout

i kin
j

M
, (3.21)

which takes this fact and the degree distribution into account. In this form,
the penalty pij is proportional to the product of the row and column sums
of the weight matrix w. The number (weight) of outgoing links of node i is
given by kout

i and the number (weight) of incoming links of node j is given by
kin

j . With these expressions one can write

[mrs]pij
=

1
M

Kout
r Kin

s . (3.22)
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Here, Kout
r is the sum of weights of outgoing links from nodes in group r and

Kin
s is the sum of weights of incoming links to nodes in group s. Ks and Kr

play the role of the occupation numbers nr and ns in (3.20). Note that this
form of pij does not ensure pij < 1 for all i, j but this little inconsistency
does not seem to have a large impact in practice and in particular for sparse
networks.

Note that it is possible to also include degree–degree correlations or any
other form of prior knowledge about pij at this point. For instance, we may
first compute a hidden variable model [7] to reproduce the observed degree
distribution including their correlations and link reciprocity and use the hence
computed values of pij as random null model. Though in principle pij could
take any form, for an efficient optimization it is convenient to have a form
which factorizes because then, the expectation values (3.20) and (3.22) can
be calculated conveniently.

3.2.5 Cohesion and Adhesion

From the above considerations and to simplify further developments, the con-
cepts of “cohesion” and “adhesion” are introduced. The coefficient of adhesion
between groups r and s is defined as

ars = mrs − γ[mrs]pij
. (3.23)

For r = s, we call css = ass the coefficient of “cohesion”. Two groups of nodes
have a positive coefficient of adhesion, if they are connected by edges bearing
more weight than expected from pij . We hence call a group cohesive, if its
nodes are connected by edges bearing more weight than expected from pij .
This allows for a shorthand form of (3.15) as Q = 1

2

∑
rs |ars| and we see

that the block model B has entries of one where ars > 0. Remember that ars

depends on the global parameter γ and the assumed penalty function pij . For

γ = 1 and the model pij = kout
i kin

j

M one finds

∑

rs

ars =
∑

r

ars =
∑

s

ars = 0. (3.24)

This means that when B is assigned from (3.15) there exists at least one entry
of one and at least one entry of zero in every row and column of B (provided
that the network is not complete or zero).

3.2.6 Optimizing the Quality Function

After having studied some properties of the configurations and image graphs
that optimize (3.13), (3.14) or (3.15), let us now turn to the problem of actually
finding these configurations. Though any optimization scheme that can deal
with combinatorial optimization problems may be implemented [8, 9], the
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use of simulated annealing [10] for a Potts model [11] is shown, because it
yields high-quality results, is very general in its application and very simple to
program. We interpret our quality function Q to be maximized as the negative
of a Hamiltonian to be minimized, i.e., we write H({σ}) = −Q. The single
site heat bath update rule at temperature T = 1/β then reads as follows:

p(σi = α) =
exp (−βH({σj �=i, σi = α}))

∑q
s=1 exp (−βH({σj �=i, σi = s})) . (3.25)

That is, the probability of node i being in group α is proportional to the
exponential of the energy (negative quality) of the entire system with all
other nodes j �= i fixed and node i in state α. Since this is costly to evaluate,
one pretends to know the energy of the system with node i in some arbitrarily
chosen group φ, which is denoted by Hφ. Then one can calculate the energy
of the system with i in group α as Hφ + ΔH(σi = φ → α). The energy Hφ

then factors out in (3.25) and one is left with

p(σi = α) =
exp {−βΔH(σi = φ → α)}

∑q
s=1 exp {−βΔH(σi = φ → s)} . (3.26)

Suppose we are trying to fit a network to a given image graph, i.e., B is
given. Then the change in energy ΔH(σi = φ → α) is easily calculated from
the change in quality according to (3.13):

ΔH(σi = φ → α) =
∑

s

(Bφs − Bαs)(kout
i→s − γ[kout

i→s])

+
∑

r

(Brφ − Brα)(kin
r→i − γ[kin

r→i]) (3.27)

=
∑

s

(Bφs − Bαs)ais +
∑

r

(Brφ − Brα)ari. (3.28)

Here kout
i→s =

∑
j wijAijδσj ,s denotes the number (weight) of outgoing links

node i has to nodes in role s and [kout
i→s] =

∑
j pijδσj ,s denotes the re-

spective expectation value. Further, kin
r→i =

∑
j wjiAjiδσj ,r denotes the

number (weight) of incoming links node i has from nodes in role r and
[kout

r→i] =
∑

j pjiδσj ,r denotes the expectation value. By ais we thus under-
stand the adhesion of node i to all nodes in group s. For undirected networks,
the two contributions of incoming and outgoing links are of course equal.
Hence, our single site updating scheme needs to assess the ki neighbors of
node i and then to determine which of the q roles is best for this node, which
takes O(q2) operations. Thus, a local update needs O(〈k〉 + q2) operations
and can be implemented efficiently on sparse graphs as long as the number of
roles is much smaller than the number of nodes in the network. Naturally, the
optimal assignment of roles to nodes is characterized by ΔQ(σi = α → φ) ≤ 0,
i.e., every node assumes its best-fitting role, provided all other nodes do not
change.
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The optimization of (3.15) without a given image graph B is different, but
its computational complexity remains the same. The change in energy is then
calculated from the change in quality according to (3.15):

ΔH(σi = φ → α) =
q∑

s

|aφs| + |aαs| − |aφ−i,s| − |aα+i,s|

+
q∑

r

|arφ| + |arα| − |at,φ−i| − |at,α+i|. (3.29)

Here, ars is the coefficient of adhesion already defined in (3.23). The subscript
φ−i denotes all nodes in group φ except i and α+i denotes all nodes in group
α plus i. For the two models of link distribution introduced, these coefficients
of adhesion are efficiently calculated. For pij = p we find

ars = mrs − γpnrns, (3.30)
ar±i,s = mrs + kout

i→s − γp(nr ± 1)ns, (3.31)
ar,s±i = mrs − kin

r→i − γpnr(ns ± 1). (3.32)

And for pij = kout
i kin

j /M we can write

ars = mrs − γKout
r Kin

s , (3.33)
ar±i,s = mrs ± kout

i→s − γ(Kout
r ± kout

i )Kin
s , (3.34)

ar,s±i = mrs ± kin
r→i − γKout

r (Kin
s ± kin

i ). (3.35)

At this point it becomes clear why a form of pij which factorizes on the
level of individual nodes is so convenient. We see from (3.30–3.35) that the
expectation values for the number of links (resp. link weights) also factorize
and one needs to keep track of only q global values K

in/out
s or nr in order to

calculate the single site update probabilities.

3.3 Conclusion

In this chapter we have derived a new quality function for block models in
complex networks. The fundamental observation was that in the approxima-
tion of sparse networks by block structures it makes sense to give more weight
to matching the sparse edges than to matching the abundant missing edges.
This leads to a function which bases the detection of patterns on the detec-
tion of maximal deviations from expected behavior according to a random
null model in accordance with our initial definition of a pattern as everything
which is not random. The quality function we defined is formally equivalent to
a model of magnetic materials, the so-called Potts model. We will exploit this
similarity greatly in the next chapters. In the following, we will focus on diag-
onal block models, i.e., modular structures or cohesive subgroups which form
most likely the most important sub-class of block models and have received
the greatest attention during recent years.
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4

Diagonal Block Models as Cohesive Groups

The importance of cohesive subgroups in networks was already discussed in
Chap. 2. In this chapter, we will discuss communities or cohesive subgroups
as a special class of block models in the framework introduced in the last
chapter.

4.1 Equivalence with Newman–Girvan Modularity
and Spin Glass Energy

In Chap. 2, a function to assess the quality of a community structure was
introduced, the so-called modularity Q defined by Newman and Girvan [1].
It can be shown that Q is a special case of the universal ansatz presented in
Sect. 3.2. Newman and Girvan’s modularity measure is written as [1]:

Q =
∑

s

ess − asbs, with as =
∑

r

ers and bs =
∑

r

esr. (4.1)

Here, ers is the fraction of links that fall between nodes in group r and s,
i.e., the probability that a randomly drawn link connects a node in group r
to one in group s. The probability that a link has at least one end in group s
is expressed by as. From this, one expects a fraction of asbs links to connect
nodes in group s among themselves. Newman’s modularity measure hence
compares the actual link density in a community with an expectation value
based on the row and column sums of the matrix ers. One can write this
modularity in a slightly different way following [2]:

ess =
1
M

∑

ij

Aijδ(σi, s)δ(σj , s)

asbs =

(
1
M

∑

i

kout
i δ(σi, s)

)(
1
M

∑

i

kin
i δ(σi, s)

)
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Q =
1
M

∑

ij

(

Aij −
kout

i kin
j

M

)

δ(σi, σj). (4.2)

This already resembles (3.13) when pij takes the form kout
i kin

j /M , γ = 1 and
B(r, s) = δ(r, s). To maximize the modularity of a community structure is
hence equivalent to finding the optimal matching of a network to an image
graph B which consists of isolated nodes with self-links only. It is worth noting
that the computational complexity of the single node update rule of (3.28)
becomes O(〈k〉 + q) because of the diagonal structure of B. This allows the
use of very large, though diagonal, image graphs or a partition into very many
cohesive subgroups.

Thus far, it was shown that the configuration of group indices which max-
imizes (4.2) can be interpreted as the community structure of a network.
Formally, (4.2) is equivalent to the negative of a Hamiltonian of a Potts spin
glass with couplings between every pair of nodes. The couplings are strongly
ferromagnetic along the links of the graph and weakly anti-ferromagnetic be-
tween nodes which are not linked. The lower the energy of this spin glass, the
“better”, i.e., more modular, the community structure. The best assignment
into communities is hence found in the configuration with minimal energy,
i.e., in the ground state of

H = −
∑

ij

(

Aij − γ
kout

i kin
j

M

)

δ(σi, σj). (4.3)

Note that we have dropped the normalizing factor 1/M to make this Hamil-
tonian extensive. The fact that the modularity shows a formal equivalence
with a model of a spin glass will allow us to derive numerous insights into
the behavior of this quality function. In particular, it will allow us to use the
full machinery of statistical mechanics to derive expectation values for the
modularity of different classes of random networks which are indispensable
for the evaluation of the statistical significance of the findings of our block
modeling procedure. For convenience, from this point forward, we will discuss
everything in terms of minimal energy (4.3) instead of maximum quality fit
(3.13).

4.1.1 Properties of the Ground State

From the fact that the ground state is a configuration which is a minimum in
the configuration space, one can derive a number of properties of the commu-
nities that apply to any local minimum of the Hamiltonian in the configuration
space. If one takes these properties as defining properties of what a commu-
nity is, one then finds valid alternative community structures also in the local
minima of the Hamiltonian. The energies of these local minima will then al-
low us to compare these community structures. It may be that alternative
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but almost equally “good” community structures exist. Before proceeding to
investigate the properties of spin configurations that represent local minima
of the Hamiltonian, a few properties of (4.3) as such shall be discussed:

First, note that for γ = 1 (4.3) evaluates to zero in case of assigning all
nodes into the same spin state due to the normalization constraint on pij , i.e.,∑

ij pij =
∑

ij Aij = M , independent of the graph. Second, for a complete
graph, any spin configuration yields the same zero energy at γ = 1. Third,
for a graph without edges, e.g., only a set of nodes, any spin configuration
gives zero energy independent of γ. Fourth, the expectation value of (4.3) for a
random assignment of spins at γ = 1 is zero. These considerations provide an
intuitive feeling for the fact that the lower the energy the better the fit of the
diagonal block model to the network and that the choice of γ = 1 will result
in what could be called “natural partitioning” of the graph into modules.

Let us consider the case of undirected networks which is most often found
in applications. Then, the adjacency matrix of the network is symmetric and
we have kin

i = kout
i and thus the coefficients of adhesion are also symmetric,

i.e., ars = asr. According to (3.28) the change in energy to move a group of
nodes n1 from group s to spin state r is

ΔH = a1,s\1 − a1r. (4.4)

Here a1,s\1 is the adhesion of n1 with its complement in group s and a1r is
the adhesion of n1 with nr. It is clear that if one moves n1 to a previously
unpopulated spin state, then ΔH = a1,s\1. This move corresponds to dividing
group ns. Furthermore, if n1 = ns, one has ΔH = −asr, which corresponds to
joining groups ns and nr. A spin configuration can only be a local minimum
of the Hamiltonian if a move of this type does not lead to a lower energy.
It is clear that some moves may not change the energy and are hence called
neutral moves. In cases of equality a1,s\1 = a1,r and nr being a community
itself, communities ns and nr are said to have an overlap of the nodes in n1.

For a community defined as a group of nodes with the same spin state in
a spin configuration that makes the Hamiltonian (4.3) minimal, one then has
the following properties:

(i) Every proper subset of a community has a maximum coefficient of adhe-
sion with its complement in the community compared to the coefficient
of adhesion with any other community (a1,s\1 = max).

(ii) The coefficient of cohesion is non-negative for all communities (css ≥ 0).
(iii) The coefficient of adhesion between any two communities is non-positive

(ars ≤ 0).

The first property is proven by contradiction from the fact that one is
dealing with a spin configuration that makes the Hamiltonian minimal. One
also observes immediately that every proper subset n1 of a community ns must
have a non-negative adhesion with its complement ns\1 in the community. In
particular this is true for every single node l in ns (al,s\l ≥ 0). Then one
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can write
∑

l∈ns
al,s\l ≥ 0. Since

∑
l∈ns

ml,s\l = 2mss and
∑

l∈ns
[ml,s\l]pij

=
2[mss]pij

, this implies css ≥ 0 for all communities s and proves the second
property. The third property is proven by contradiction again. Please note
that for γ = 1 and pij = kikj/M , no community is formed of a single node
due to condition (3.24). The last two properties can be summarized in the
following inequality which provides an intuition about the significance of the
parameter γ:

css ≥ 0 ≥ ars ∀r �= s. (4.5)

Assuming a constant link probability, one can rewrite this inequality in order
to relate the inner link density of a community and the outer link density
between communities with an average link density:

2mss

nsns
≥ γp ≥ mrs

nrns
∀r �= s. (4.6)

Note that γp can be interpreted as a threshold between inner and outer link
density under the assumption of a constant link probability.

Apart from giving an interpretation of the (local) minima of the Hamil-
tonian, the above properties also give a definition of what a community is,
alternative to that of a set of nodes of equal spin value in a configuration that
represents a minimum of the Hamiltonian. When speaking of the community
structure of a network, one generally refers to that obtained at lowest energy,
i.e., in the ground state. One can also use the term “community” denoting a
subset of nodes that has all of the above properties. Note that this definition
of community adapts itself naturally to different classes of networks, since a
model pij is included in the definition of adhesion and cohesion. Since the
assignment of nodes into communities changes with the value of γ, the notion
“community at level γ” shall be adopted, in order to characterize possible
hierarchies in the community structure.

4.1.2 Simple Divisive and Agglomerative Approaches
to Modularity Maximization

The equivalence of modularity with a spin glass energy shows that the prob-
lem of maximizing modularity falls into the class of NP-hard optimization
problems [3]. For these problems, it is believed that no algorithm exists that
is able to produce an optimal solution in a time that grows only polynomial
with the size of the problem instance. However, heuristics such as simulated
annealing exist, which are able to find possibly very good solutions. In this
section, we will discuss an often used approach to clustering, namely hierar-
chical agglomerative and divisive algorithms and investigate whether they too
are good heuristics for finding partitions of maximum modularity.

A number of community detection algorithms presented in Chap. 2 have
followed recursive approaches and lead to hierarchical community struc-
tures. Hierarchical clustering techniques can be dichotomized into divisive
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and agglomerative approaches [4]. It will be shown how a simple recursive
divisive approach and an agglomerative approach may be implemented and
where they fail.

In the present framework, a hierarchical divisive algorithm would mean to
construct the ground state of the q-state Potts model by recursively partition-
ing the network into two parts according to the ground state of a 2-state Potts
or Ising system. This procedure would be computationally simple and result
directly in a hierarchy of clusters due to the recursion of the procedure on
the parts until the total energy cannot be lowered anymore. Such a procedure
would be justified, if the ground state of the q-state Potts Hamiltonian and
the repeated application of the Ising system cut the network along the same
edges. Let us derive a condition under which this could be ensured.

In order for this recursive approach to work, one must ensure that the
ground state of the 2-state Hamiltonian never cuts though a community as
defined by the q-state Hamiltonian. Assume a network made of three commu-
nities n1, n2 and n3 as defined by the ground state of the q-state Hamiltonian.
For the bi-partitioning, one now has two possible scenarios. Without loss of
generality, the cut is made either between n2 and n1 + n3 or between n1, n2

and n3 = na + nb, parting the network into n1 + na and n2 + nb. Since the
former situation should be energetically lower for the recursive algorithm to
work, one arrives at the condition that

mab − [mab]pij
+ m1b − [m1b]pij

> m2b − [m2b]pij
, (4.7)

which must be valid for all subgroups na and nb of community n3. Since n3

is a community, it is further known that mab − [mab]pij
> m1b − [m1b]pij

and
mab − [mab]pij

> m2b − [m2b]pij
. Though mab − [mab]pij

> 0, since n3 is a
community, m1b − [m1b]pij

< 0 and m2b − [m2b]pij
< 0 for the same reason

and hence condition (4.7) is not generally satisfied. Figure 4.1 illustrates a
counterexample.
Assuming pij = p, part (a) of the figure shows the ground state of the system
when using only two spin states. Part (b) of Fig. 4.1 shows the ground state
of the system without constraints on the number of spin states, resulting in a
configuration of three communities. The bi-partitioning approach would have
cut through one of the communities in the network. Recursive bi-partitionings
cannot generally lead to an optimal assignment of spins that maximizes the
modularity.

In [5] Newman et al. have introduced a fast greedy strategy for modularity
maximization. It effectively corresponds to a simple nearest neighbor agglom-
erative clustering of the network where the adhesion coefficient ars is used
as a similarity measure. The algorithm initially assigns different spin states
to every node and then proceeds by grouping those nodes together that have
the highest coefficient of adhesion. As Fig. 4.2 shows, this approach fails, if
the links between two communities connect nodes of low degree. The network
consists of 14 nodes and 37 links. It is clearly seen that in the ground state,
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a)

b)

Fig. 4.1. Illustration of the problem of recursive bi-partitioning. The ground state
of the Hamiltonian with only two possible spin states, as shown in (a), would cut
through one of the communities that are found when allowing three spin states as
shown in (b).

x

Fig. 4.2. Example network for which an agglomerative approach of grouping to-
gether nodes of maximal adhesion will fail. Starting from an assignment of different
spin states to every node, the largest adhesion is found for the nodes connected by
edge x, which are grouped together first by the agglomerative procedure. However,
it is clearly seen that x should lie between different groups.

the network consists of two communities and edge x lies between them. How-
ever, when initially assigning different spin states to all nodes, the adhesion a
between the nodes connected by x is largest: a = 1−16/2M , since the product
of degrees at this edge is lowest. Therefore, the agglomerative procedure de-
scribed is misled into grouping together the nodes connected by x already in
the very first step. Furthermore, it is clear that in a network, where all nodes
have the same degree initially, all edges connect nodes of the same coefficient
of adhesion. In this case, it cannot be decided which nodes to group together
in the first step of the algorithm at all. It was shown by Newman [5] that the
approach does deliver good results in benchmarks using computer-generated
test networks as introduced in Sect. 2.4. The success of this approach depends
of course on whether or not the misleading situations have a strong effect on
the final outcome of the clustering. In the example shown, after grouping
together the nodes at the end points of x, the algorithm will proceed to fur-
ther add nodes from only one of the two communities linked by x. Hence,
the initial mistake persists, but does not completely destroy the result of the
clustering.
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4.1.3 Finding the Community Around a Given Node

Often, it is desirable not to find all communities in a network, but to find only
the community to which a particular node belongs. This may be especially
useful if the network is very large and detecting all communities may be time
consuming. In the framework presented here, one can do this using a fast,
greedy algorithm. Starting from the node one is interested in, node j, one
successively adds nodes with positive adhesion to the group and continues as
long as the adhesion of the community one is forming with the rest of the
network is decreasing. Adding a node i from the rest of the network r to the
community s around the start node j, the adhesion between s and r changes
by

Δasr(i → s) = air − ais. (4.8)

For pij = p, this can be written as

Δasr(i → s) = kir − kis − γp(nr − 1 − ns), (4.9)

where nr = N − ns is the number of nodes in the rest of the network and
ns the number of nodes in the community. For pij = kikj/M , the change in
adhesion reads

Δasr(i → s) = kir − kis −
γ

M
ki (Kr − ki − Ks) . (4.10)

Here, Kr and Ks are the sums of degrees of the rest of the network r and the
community under study s, respectively, and ki is the degree of node i to be
moved from r to s, which has ki→s links connecting it with s and ki→r links
connecting it with the rest of the network. It is understood that only when
the adhesion of i with s is larger than with r, the total adhesion of s with r
decreases. Equivalent expressions can be found for removing a node i from the
community s and rejoining it with r. The generalization to directed networks is
then straightforward. For γ = 1 and pij = kikj/M , one has ais+air +2cii = 0,
and cii < 0 by definition for networks without self-links and close to zero for
all practical cases. Then, ais and air are either both positive and very small
or have opposite signs.
Choosing the node that gives the smallest Δars will then result in adding
a node with positive coefficient of adhesion to s. It is easy to see that this
ensures a positive coefficient of cohesion in the set of nodes around j.

4.2 Comparison with Other Definitions of Communities

In Sect. 4.1.1 the term community was defined as a set of nodes having prop-
erties (i) through (iii). Compared with the many definitions of community
in the sociological literature [6], this definition is most similar to that of an
“LS set”. Recall, LS set is a set of nodes S in a network such that each of its
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proper subsets has more links to its complement in S than to the rest of the
network [7]. Note, however, that the problem in the definition of an LS set
mentioned in Sect. 2.3.1 does not occur.

Previously, Radicchi et al. [8] had given a definition of community “in a
strong sense” as a set of nodes V with the condition kin

i > kout
i ,∀i ∈ V , i.e.,

every node in the group has more links to other members of the group than
to the rest of the network. In the same manner, they define a community
in a “weak sense”as a set of nodes V for which

∑
i∈V kin

i >
∑

i∈V kout
i , i.e.,

the total number of internal links is larger than half of the number of the
external links, since the sum of kin

i is twice the number of internal edges. The
similarity with properties (1) and (2) of the new definition is evident, but
instead of comparing absolute numbers for single nodes, the new definition
compares absolute numbers to expectation values for these quantities in the
form of the coefficients of cohesion and adhesion not only for single nodes but
also for sets of nodes. As already discussed in Sect. 2.3.2, one of the conse-
quences of Radicchi et al.’s definitions is that every union of two communities
is also a community. This leads to the strange situation that a community in
the “strong” or “weak” sense can also be an ensemble of disjoint groups of
nodes. This paradox may only be resolved if one assumes a priori that there
exists a hierarchy of communities. The following considerations and examples
will show that hierarchies in community structures are possible, but cannot
be taken for granted. The representation of community structures by dendro-
grams, therefore, cannot always capture the true community structure and
hence all hierarchical community detection algorithms should be used with
caution.

Another definition of communities is that given by Palla et al. [9, 10], with
a community defined as a set of nodes that can be reached through a clique
percolation process. Apart from the issues already identified in Sects. 2.3.1
and 2.4.3, let us stress again the difference in the definition of overlap. The
k-clique percolation process implies a nested hierarchy in the sense that a
k+1-clique is always entirely contained in a k-clique, though it does also allow
for overlap in the sense that nodes may be part of more than one k-clique.
The overlapping nodes themselves, however, can never form a k-clique them-
selves. That is, the overlapping nodes can never be a community of their own.
As will be shown below, this situation is possible and is indeed encountered
in real world networks as well.

4.2.1 Hierarchy and Overlap of Community Assignments

Even though hierarchical community structures cannot be taken for granted
and hence should not be enforced by using hierarchical community detection
algorithms, they still form an important organizational principle in networks
which shall be investigated directly from the adjacency matrix. When ordering
the rows and columns according to the assignment of nodes into communities,
the link density in the adjacency matrix is directly transformed into point
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density and hence into gray levels. Since the inner link density of a commu-
nity is higher than the external, one can distinguish communities as square
blocks of darker gray. Different orderings may be combined into a consensus
ordering. That is, starting from a super-ordering given, the nodes within each
community are reordered according to a second given sub-ordering, i.e., one
only changes the internal order of the nodes within communities of the super-
ordering. This leads to the formation of new blocks of those nodes that are
assigned together in one community in both orderings. One can then repeat
the procedure to obtain further iterative consensus orderings.

First, an example of a completely hierarchical network is given very similar
to that used in Ref. [11]. Here, hierarchy implies that all communities found at
a value of γ2 > γ1 are proper sub-communities of the communities found at γ1.
In the example, a network made of four large communities of 128 nodes each
was constructed. Each of these nodes has an average of 7.5 links to the 127
other members of their community and 5 links to the remaining 384 nodes in
the network. Each of these 4 communities is composed of 4 sub-communities
of 32 nodes each. Each node has an additional 10 links to the 31 other nodes
in its sub-community. Figure 4.3 shows the adjacency matrix of this network
in different orderings.
At γ = 1, the ground state is composed of the four large communities as
shown in the left part of Fig. 4.3. Increasing γ above a certain threshold
makes assigning different spin states to the 16 sub-communities the ground
state configuration. The middle part of Fig. 4.3 shows an ordering obtained
with a value of γ = 2.2. One can see that some of the these sub-communities
are more densely connected among each other. Imposing the latter ordering
on top of the ordering obtained at γ = 1 then allows to display the full com-
munity structure and hierarchy of the network as shown in the right part of
Fig. 4.3. Note that a recursive approach applying the community detection

Fig. 4.3. Example of an adjacency matrix for a perfectly hierarchical network. The
network consists of four communities, each of which is composed of four subcom-
munities. Using γ = 1, the four main communities (left) are found. With γ = 2.2,
one finds the 16 sub-communities (middle). Link density variations in the off di-
agonal parts of the adjacency matrix already hint at a hierarchy. The consensus
ordering (right) shows that each of the larger communities is indeed composed of
four sub-communities each.
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Fig. 4.4. Example of an adjacency matrix for an only partially hierarchical network
with overlapping community structure. The network consists of two large commu-
nities A and B, each of which contains a sub-community a and b, which are densely
linked with each other. Using γ = 0.5, one finds the two large communities (left).
With a larger γ = 1, the two small sub-communities a and b are grouped together.
The consensus ordering (right) shows that most of the links which join A and B in
fact lie between a and b.

algorithm to separate subgroups was not used. Instead, two independent or-
derings were obtained which are only compatible with each other, because the
network has a hierarchical structure of dense communities composed of denser
subcommunities.

In contrast to this situation, Fig. 4.4 shows an example of a network that
is only partially hierarchical. The network consists of 2 large communities A
and B containing 512 nodes, which have on average of 12 internal links per
node. Within A and B, a subgroup of 128 nodes exists, which is denoted
by a and b, respectively. Every node within this subgroup has 6 of its 12
intra-community links to the 127 other members of this subgroup. The two
subgroups a and b have on average three links per node with each other.
Additionally, every node has two links with randomly chosen nodes from the
network. From Fig. 4.4, one observes that the two large communities are found
using γ = 0.5. Maximum modularity, however, is reached at γ = 1 when a
and b are joined into a separate community.
Only when using the consensus of the ordering obtained at γ = 0.5 and
γ = 1, one can understand the full community structure with a and b being
subgroups that are responsible for the majority of links between A and B.
It is understood, that this situation cannot be interpreted as a hierarchy,
even though a and b are cohesive subgroups in A and B, respectively. Here,
the nodes responsible for the overlap form a community of their own at a
particular value of γ.

From these examples, it is clear that the above link structures would be
much better fitted with a non-diagonal block model. However, the reduced
computational cost of fitting a diagonal block model may sometimes make
the procedure outlined above useful.

One cannot generally assume that a community structure of a network is
uniquely defined. There may exist several but very different partitions that
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all have a very high value of modularity. Palla et al. [9, 10] have introduced
an algorithm to detect overlapping communities by clique percolation and
Gfeller et al. have introduced the notion of nodes lying “between clusters” [12].
This uncertainty in the definition of the borders of a community is expected
from the spin glass nature of the Hamiltonian, where generally many energy
minima may exist that are comparably deep corresponding to comparably
good assignments of nodes into communities. Additionally, the (local) minima
of the Hamiltonian may be degenerate. The overlap of communities is linked
to degeneracy of the minima of the Hamiltonian. Since the degeneracy can
arise in several ways, one has to differentiate between two different types of
overlap: overlap of community structure and overlap of communities.

It was already shown that it is undecidable whether a group of nodes nt

should be a member of community ns or nr, if the coefficients of adhesion are
equal for both of these communities. Formally, one finds at,s\t = atr. In this
situation, one speaks of overlapping communities ns and nr with overlap nt,
since the number of communities in the network is not affected by this type of
degeneracy. Nodes that do not form part of overlaps will always be grouped
together and can be seen as the non-overlapping cores of communities.

On the other hand, it may be undecidable, if two groups of nodes should
be grouped together or apart, if the coefficient of adhesion between them is
zero, i.e., there exist as many edges between them as expected from the model
pij . Similarly, it may be undecidable, if a group of nodes should form its own
community or be divided and the parts joined with different communities,
if this can be done without increasing the energy. In these situations, the
number of communities in the ground state is not well defined and one cannot
speak of overlapping communities, since communities do not share nodes in
the degenerate realizations. Hence, such a situation shall be referred to as
overlapping community structures.

The overlap is best represented in a symmetric N × N “co-appearance”
matrix, in which the entry i, j denotes if or how often nodes i and j were
grouped together. This also allows the combined representation of the over-
lap of many different community structures necessary for the investigation of
degenerate ground states. In addition, this type of representation allows the
comparison of community structures obtained from a parameter variation of γ
also for large networks and hence to study possible hierarchies and the stabil-
ity of community structures for different values of γ when possible degenerate
ground states can only be sampled in a stochastic manner.

It was already stressed that properties (i) through (iii) are also valid for
any local minimum of the energy landscape defined by the Hamiltonian and
the graph. They only imply that one cannot jump over energy barriers and
move into deeper minima using the suggested move set. It may therefore be
interesting to study also the local minima and compare them to the ground
state. Local minima may be sampled by running greedy optimization algo-
rithms using random initial conditions. For correlated energy landscapes, it is
known that deeper local minima have larger basins of attraction in the con-
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figuration space [13]. The Hamiltonian (4.3) induces such a correlated energy
landscape on the graph, since the total energy is not drastically affected by
single spin changes. Therefore, one expects that the deep local minima will be
sampled with higher frequency and that pairs of nodes that are grouped to-
gether in deep minima will have larger entries in the co-appearance matrix. A
number of examples of co-appearance matrices sampling local energy minima
at different values of γ will be given later.

The use of co-appearance matrices derived from sampling the local minima
of our quality function is of course not limited to the analysis of diagonal block
models but can also be used to study the stability of role assignments for non-
diagonal block models as well.

4.3 Benchmarking the Algorithm

In order to benchmark the performance of the Potts model approach to com-
munity detection, it is applied to computer-generated test networks. Networks
with communities of equal and different size were constructed. Those with
equal size had 128 nodes, grouped into 4 communities of size 32. Those with
differently sized communities had 320 nodes, grouped into 4 communities of
size 32, 64, 96 and 128. In both types of networks, each node has an average
degree of 〈k〉 = 16. The average number of links to members of the same com-
munity 〈kin〉 and to members of different communities 〈kout〉 is then varied,
but always ensuring 〈kin〉 + 〈kout〉 = 〈k〉. Hence, decreasing kin renders the
problem of community detection more difficult.

Recovering a known community structure, any algorithm has to fulfill two
criteria: it has to group nodes in the same community which belong together
by design and it has to group nodes apart which belong to different commu-
nities by design. The first criterion is called “sensitivity” and measures the
percentage of pairs of nodes which are correctly grouped together. The second
criterion is called “specificity” and measures the percentage of pairs of nodes
which are correctly grouped apart.

Because of the Poisson nature of the degree distribution, a connection
model of pij = p was used. Figure 4.5 shows the result of this experiment in
comparison with the results obtained from the algorithm of Girvan and New-
man [14]. Clearly, both algorithms show high sensitivity and high specificity.
However, the Potts model outperforms the GN algorithm on both types of
networks in both sensitivity and specificity. When relaxing the Potts model
Hamiltonian from random initial conditions at zero temperature, performance
decreases, but is still as good as that of the GN algorithm.

An important aspect is the dependence of the sensitivity (specificity) of
the algorithm on the number of allowed spin states q. Figure 4.6 shows that
as long as q ≥ 4, i.e., the actual number of communities in the network, the
value of q is irrelevant. This result is also independent of the strength of the
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Fig. 4.5. Benchmarking the Potts model approach to community detection with
networks of known community structure. Sensitivity measures the percentage of
pairs of nodes correctly identified as belonging to the same community and speci-
ficity measures the percentage of pairs of nodes correctly grouped into different
communities. Top: 4 communities of 32 nodes each. Bottom: 4 communities of size
32, 64, 96 and 128 nodes.

community structure under investigation, i.e., independent of kin. Further-
more, it is necessary to study the stability of results with respect to a change
in γ. As Fig. 4.6 shows, the better the community structure is defined, i.e.,
the greater kin is with respect to 〈k〉, the more stable are the results. The
maxima of the curves for all values of kin, however, coincide at γ = 1, i.e., at
the point where the contribution of missing and existing links is equal. The
same statements also apply to the specificity.

In cases where exploring the community structure starts from a single
node, the definitions of sensitivity and specificity have to be changed. The
percentage of nodes that are correctly identified as belonging to the commu-
nity around the start node is measured as sensitivity and the percentage of
nodes that are correctly identified as not belonging to the community around
the start node as specificity.

Figure 4.7 shows the results obtained for different values of 〈kin〉 at γ = 1
and using pij = kikj/M as model of the connection probability. Note that this
approach performs rather well for a large range of 〈kin〉 with good sensitiv-
ity and specificity. In contrast to the benchmarks for running the simulated
annealing on the entire network as shown in Fig. 4.5, a sensitivity that is
generally larger than the specificity is observed. This shows that running the
simulated annealing on the entire network tends to mistakenly group things
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Fig. 4.6. Sensitivity of the Potts model approach to community detection as a
function of the parameters of the algorithm for networks with four equal-sized com-
munities of 32 nodes each. Left: Sensitivity as a function of the number of allowed
spin states (communities) q for different kin. Right: Sensitivity as a function of γ for
different values of kin and with q = 25.

apart that do not belong apart by design, while constructing the community
around a given node tends to group things together that do not belong to-
gether by design. This behavior is understandable, since working on the entire
network amounts to effectively implementing a divisive method, while starting
from a single node means implementing an agglomerative method.

One real world example with known community structure is the college
football network from Ref. [14]. It represents the game schedule of the 2000
season, Division 1, US college football league. The nodes in the network repre-
sent the 115 teams, while the links represent 613 different games played in that
season. The community structure of this network arises from the grouping into
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Fig. 4.7. Benchmark of the algorithm for discovering the community around a given
node in networks with known community structure. Networks of 128 nodes and 4
communities were used. The average degree of the nodes was fixed to be 16, while
the average number of intra-community links 〈kin〉 was varied. Sensitivity measures
the fraction of nodes correctly assigned to the community around the start node,
while specificity measures the fraction of nodes correctly kept out of the community
around the start node.
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conferences of 8–12 teams, each. On average, each team has seven matches
with members of its own conference and another four matches with mem-
bers of different conferences. A parameter variation in γ at 10 values between
0.1 ≤ γ ≤ 1 is performed. This allows for the estimation of the robustness of
the result with respect to γ and the detection of possible hierarchies in the
community structures, as low values of γ will generally lead to a less-diverse
community assignment and larger communities. At each value of γ the system
is relaxed 50 times from a randomly assigned initial configuration at T = 0
using q = 50. The connection model chosen was again pij = p.

Figure 4.8 shows the resulting 115×115 co-appearance matrix, normalized
and color coded. The ordering of the matrix corresponds to the assignment
of the teams into conferences according to the game schedule as indicated by
the dashed lines. Apart from recovering almost exactly the known community
structure, the Potts model is also able to detect inhomogeneities in the distri-
bution of intra- and inter-conference games. For instance, one observes a large

Fig. 4.8. Co-appearance matrix for the football network. A parameter variation of
γ was performed with 10 values between 0.1 ≤ γ ≤ 1. At each value, the system
was relaxed 50 times from a random initial condition. The matrix ordering is taken
from the assignment of teams into conferences according to the game schedule.
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overlap of the Pacific Ten and Mountain West conferences and also a possible
subdivision of the Mid American conference into two sub-conferences. This is
due to the fact that geographically close teams are more likely to play against
each other as already pointed out in Ref. [14].

4.4 Community Detection and Graph Partitioning

In order to assess the statistical significance of the community structures found
with any algorithm, it is necessary to compare them with expectation values
for random networks. This is of course always possible by rewiring the network
randomly [15], keeping the degree distribution invariant and then running a
community detection algorithm again, comparing the result to the original
network. This method, however, can only give an answer to what a particular
community detection algorithm may find in a random network and hence
depends on the very method of community detection used. It seems a much
better method would be to compare the results of a community detection
algorithm with a theoretical result, obtained independently of any algorithm.
It was shown in previous sections that the problem of community detection
can be mapped onto finding the ground state of an infinite range spin glass. A
number of techniques exist to calculate expectation values for the energy and
the local field distribution in the ground state of spin glasses, given that the
couplings between spins are random, but with a known distribution. In the
remainder of this chapter and in the following ones, we will make extensive
use of these techniques.

What does the community structure of a completely random network look
like? The first observation one makes is that the configuration space or the
number of possible assignments into q communities is largest when these
groups are equal in size, i.e., contain the same number of nodes N/q. One
can also show that the variance of the number of links within communities is
largest when they are of equal size. These two facts taken together mean that
in random networks, the assignment of nodes into communities with maximal
modularity will with very high probability lead to equal-sized communities.
Hence, we only need to calculate expectation values for the modularity of
a partition of the network into equal-sized groups. In the language of spin
glasses, this means we are looking for the energy of a ground state with zero
magnetization. We can also say that we are looking for a partition into q
equal-sized groups with a maximum number of links within groups, or, equiv-
alently, with a minimum number of links between groups. The latter is a
standard problem in combinatorial optimization and is known as the graph
partitioning problem. In short, the communities which form the partition of
maximum modularity in a random network will correspond to a minimum cut
equipartition.
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4.4.1 Expectation Values for the Modularity

The problem of graph partitioning has been studied extensively in physics lit-
erature and a number of analytical results already exist. The results presented
by Fu and Anderson [16] for bi-partitioning and Kanter and Sompolinsky for
q-partitioning [17] are all based on the fact that in the limit of large N , the
local field distribution in infinite range systems is Gaussian and can hence be
characterized by only the first two moments of the coupling distribution, the
mean and the variance. The couplings used in the study of modularity are
Jij = Aij −γpij which have a mean independent of the particular form of pij :

J0 = (1 − γ)p, (4.11)

which is zero in the case of the “natural partition” at γ = 1. The ground
state of spin glasses with a coupling distribution of zero mean has always
zero magnetization and hence, one must find groups of equal size [18]. This
argument further backs our initial statement on the equivalence of modularity
maximization in random networks and graph partitioning. The variance of the
coupling distribution amounts to

J2 = p − (2γ − γ2)〈p2〉. (4.12)

Now one can write immediately for the modularity at γ = 1 [17]:

Qq = − 1
M

HGS =
N3/2

M
J

U(q)
q

, (4.13)

where U(q) is the ground state energy of a q-state Potts model with Gaussian
couplings of zero mean and variance J2. For large q, one can approximate
U(q) =

√
q ln q. The exact formula for calculating U(q) is [17]

U(q) = −1
4
(q + 1)a +

1
a

ln
[( q

2π

)1/2

2−q+1

×
∫ ∞

−∞
dt exp

(

− t2

2q
+ at

)(

1 + erf
(

t√
2q

))q−1
]

. (4.14)

U(q) must be maximal with respect to the parameter a. This can be evaluated
numerically and Table 4.1 gives the results for a few values of q.

One sees that maximum modularity is obtained at q = 5, though the value
of U(q)/q for q = 4 is not much different from it. This qualitative behavior,

Table 4.1. Values of U(q)/q for various values of q obtained from (4.14), which can
be used to approximate the expected modularity with (4.13).

q 2 3 4 5 6 7 8 9 10
U(q)/q 0.384 0.464 0.484 0.485 0.479 0.471 0.461 0.452 0.442
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that dense random graphs tend to cluster into only a few large communities,
is confirmed by numerical experiments. By rewriting M = pN2/2 and under
the assumption of pij = p as in the case of Erdős Rényi (ER) random graphs
[20], one can further simplify (4.13) and write for the maximum value of the
modularity of an ER random graph with connection probability p and N
nodes:

Q = 0.97
√

1 − p

pN
, (4.15)

where the fact that q = 5 makes the modularity maximal has been used.
Figure 4.9 shows the comparison of (4.15) and experiments where the mod-
ularity was maximized numerically using a simulated annealing approach as
described in an earlier section. One sees that the prediction fits the data well
for dense graphs and that modularity decays as a function of (pN)−1/2 instead
of (2/pN)2/3 as proposed in Ref. [19].

Even though the estimations of the value of modularity for random graphs
from the Potts spin glass are rather close to the actual situation for sparse
random graphs, the number of communities at which maximum modularity
is achieved is not. In Ref. [19] it had already been shown that the number of
communities for which the modularity reaches a maximum is

√
N for tree-like

networks with 〈k〉 = 2. Unfortunately, no plot was given for the number of
communities found in denser networks. The numerical experiments on large
Erdős–Rényi random graphs also show that the number of communities found
in sparse networks tends to increase as 〈k〉 decreases.

In general, recursive bi-partitioning will not lead to an optimal community
assignment (compare Sect. 4.1.2), shall still be used here for random graphs.
It was shown that maximum modularity for random graphs is achieved for
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Fig. 4.9. Modularity of Erdős Rényi random graphs with average connectivity
pN = 〈k〉 compared with the estimation from (4.15) and that of Guimera et al. [19].
For the experiment, random graphs with N = 10, 000 were used.
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equipartitions. Hence, one should be able to partition the network recursively
and at least find the number of communities in a random graph, for which
further partitioning does not result in an improvement of the modularity. The
number of cut edges C = C(N,M) in any partition will be a function of the
number of nodes in the remaining part and the number of connections within
this remaining part and their distribution. Note that the M connections will
be distributed into internal and external links per node kin + kout = k. This
allows us to write C = N〈kout〉/2 for a bi-partition. After each partition, the
number of internal connections a node has decreases due to the cut. These
results are used in order to approximate the number of cut edges after b
recursive bi-partitions which lead to 2b parts:

C =
b∑

t=1

2t−1 N

2t
〈kout,t〉 =

b∑

t=1

N

2
〈kout,t〉, (4.16)

where 〈kout,t〉 is the average number of external edges a node gains after cut
t. Since for an Ising model, the ground state energy is −EGS = M − 2C one
finds

〈k〉
2

+ EGS(〈k〉) = 〈kout〉. (4.17)

Since k = kin + kout, one also has

〈k〉
2

− EGS(〈k〉) = 〈kin〉. (4.18)

This shows that for any bi-partition, one can always satisfy more than half
of the links of every node on average. This also means that any bi-partition
will satisfy the definition of community given by Radicchi et al. [8] at least
on average, which further means that every random graph has – at least on
average – a community structure, assuming Radicchi’s definition of community
in a strong sense (kin > kout) for every node of the random graph. The
definition of community in a weak sense

∑
i kin

i >
∑

i kout
i can always be

fulfilled in a random graph.
From (4.17) and (4.18) one can then calculate the total number of edges

cut after t recursions according to (4.16). One way of doing this is to go back
to the results of Fu and Anderson [16] again, who find for a bi-partition

C =
M

2

[

1 − c

√
1 − p

pN

]

, (4.19)

with a constant of c = 1.5266 ± 0.0002 [21]. One can write

〈kout〉 =
pN − c

√
pN(1 − p)
2

, (4.20)

〈kin〉 =
pN + c

√
pN(1 − p)
2

, (4.21)
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from which one can calculate (4.16) substituting pN with the appropriate
〈kin〉 in every step of the recursion. The modularity can then be written

Q =
2b − 1

2b
− 1

〈k〉

b∑

t=1

〈kout,t〉. (4.22)

Now one only needs to find the number of recursions b that maximizes Q.
Since the optimal number of recursions will depend on pN , one also finds an
estimation of the number of communities in the network.

Figure 4.10 shows a comparison between the theoretical prediction of the
maximum modularity that can be obtained from (4.22). The improvement
of (4.22) over (4.15) is most likely due to the possibility of having larger
numbers of communities, since (4.19) also assumes a Gaussian distribution
of local fields, which is a rather poor approximation for the sparse graphs
under study. Again, one finds that the modularity behaves asymptotically
like 〈k〉−1/2 as already predicted from the Potts spin glass and contrary to
the estimation in [19].

Figure 4.11 shows the comparison of the number of communities esti-
mated from (4.22) and the numerical experiments on random graphs. The
good agreement between experiment and prediction is interesting, given the
fact that (4.22) allows only powers of two as the number of communities. For
dense graphs, the Potts limit of only a few communities is recovered. One ob-
serves that sparse random graphs cluster into a large number of communities,
while dense random graphs cluster into only a handful of large communities.
Most importantly, sparse random graphs exhibit very large values of mod-
ularity. These large values are only due to their sparseness and not due to
small size. It should also be stressed that statistically significant modularity
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Fig. 4.10. Modularity of Erdős–Rényi random graphs with average connectivity
pN = 〈k〉 compared with the estimation from (4.22) and from Guimera et al. [19].
For the experiment, random graphs with N = 10, 000 were used.
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Fig. 4.11. Number of communities found in Erdős–Rényi random graphs with av-
erage connectivity pN = 〈k〉 compared with the estimation from (4.22). For the
experiment, random graphs with N = 10, 000 nodes were used.
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Fig. 4.12. Ratio of internal links to external links kin/kout in the ground state of
the Hamiltonian. Shown are the experimental values from clustering random graphs
with N = 10, 000 nodes and the expectation values calculated from using a Potts
model (4.15) or an Ising model (4.22) recursively. The dotted line represents the
Radicchi et al. definition of community in a “strong sense” [8]. Note that sparse
graphs will, on average, always exhibit such communities, while dense graphs will
not, even though their modularity may be well above the expectation value for an
equivalent random graph.
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must exceed the expectation values of modularity obtained from a suitable
null model of the graph. If this null model is an Erdős–Rényi random graph,
then there is very little improvement possible over the values of modularity
obtained for the null model for sparse graphs.

4.4.2 Theoretical Limits of Community Detection

With the results of the last section it is now possible to start explaining
Fig. 4.5 and to give a limit to which extent a designed community structure
in a network can be recovered. As was shown, for any random network one
can find an assignment of spins into communities that leads to a modularity
Q > 0. For the computer-generated test networks with 〈k〉 = 16 one has a
value of p = 〈k〉/(N − 1) = 0.126 and expects a value of Q = 0.227 according
to (4.15) and Q = 0.262 according to (4.22). The modularity of the community
structure built in by design is given by

Q(〈kin〉) =
〈kin〉
〈k〉 − 1

4
(4.23)

for a network of four equal sized groups of 32 nodes. Hence, below 〈kin〉 = 8,
one has a designed modularity that is smaller than what can be expected from
a random network of the same connectivity! This means that the minimum
in the energy landscape corresponding to the community structure that was
designed is shallower than those that one can find in the energy landscape
defined by any network. It must be understood that in the search for the built-
in community structure, one is competing with those community structures
that arise from the fact that one is optimizing for a particular quantity in a
very large search space. In other words, any network possesses a community
structure that exhibits a modularity at least as large as that of a completely
random network. If a community structure is to be recovered reliably, it must
be sufficiently pronounced in order to win the comparison with the structures
arising in random networks. In the case of the test networks employed here,
there must be more than ≈8 intra-community links per node. Figure 4.12 again
exemplifies this. Observe that random networks with 〈k〉 = 16 are expected to
show a ratio of internal and external links kin/kout ≈ 1. Networks which are
considerably sparser have a higher ratio while denser networks have a much
smaller ratio. This means that in dense networks one can recover designed
community structure down to relatively smaller 〈kin〉. Consider for example
large test networks with 〈k〉 = 100 with four built-in communities. For such
networks one expects a modularity of Q ≈ 0.1 and hence the critical value
of intra-community links to which the community structure could reliably be
estimated would be 〈kin〉c = 35 which is much smaller in relative comparison
to the average degree in the network.

This also means that the point at which one cannot distinguish between
a random and a modular network is not defined by pin = pout = p for the
internal and external link densities as one may have intuitively expected.
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Rather, it is determined by the ratio of 〈kin〉/(〈k〉−〈kin〉) in the ground state
of a random network and depends on the connectivity of the network 〈k〉.

Finally, from Fig. 4.12 one observes that sparse random graphs all show
communities in the strong sense of Radicchi et al. [8] . Further, it is very
difficult to find communities in the strong sense in dense graphs, even though
they may exhibit a modularity well above that of a random graph.

4.5 Conclusion

In this chapter we focussed on modular or community structures in networks.
We have seen how they naturally form a sub-class of the block models intro-
duced in the previous chapter. By recognizing the formal equivalence of the
quality function for a diagonal block structure with the energy of an infinite
range spin glass, we could derive first estimates for the expectation value of
the fit of an entirely random network to a diagonal block model. It was shown
that any structure present in a network competes with spurious structures that
arise due to random fluctuations in the link structure of the network and the
optimization process carried out by the community detection algorithm. Such
competition may render a community structure in a network undetectable.
Note that this is not a finite size effect which vanishes in the thermodynamic
limit but rather persists at all scales. The following two chapters will address
this problem in greater detail.
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5

Modularity of Dense Random Graphs

In the last chapter, it was shown how the problem of community detection
can be mapped onto finding the ground state of an infinite range spin glass.
Further, it was demonstrated that for random graphs, maximum modularity
is achieved for an equipartition due to entropic reasons. It was possible to use
known results from graph partitioning to give estimates of the modularity in
ER random graphs. However, these results only apply to dense graphs with a
Poissonian degree distribution. In this chapter, the ground state energy of the
modularity Hamiltonian will be calculated directly for any degree distribution.
The entire development will follow closely along the lines of Fu and Anderson
(FA) [1, 2].

5.1 Analytical Developments

Let us recall the modularity Hamiltonian:

H = −
∑

i<j

(Aij − γpij)δ(σi, σj). (5.1)

For convenience, instead of a Potts model with q different spin states, the
discussion is limited to only two spin states as in the Ising model, namely
Si ∈ −1, 1. The delta function in (5.1) can be expressed as

δ(Si, Sj) =
1
2
SiSj +

1
2
, (5.2)

which leads to the new Hamiltonian

H = −
∑

i<j

(Aij − γpij)SiSj . (5.3)

Note that (5.3) differs from (5.1) only by an irrelevant constant which even
vanishes for γ = 1 due to the normalization of pij . Because of the factor 1/2
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in (5.2), the modularity of the partition into two communities is now and for
the remainder of this chapter

Q2 = − H

2M
, (5.4)

where H now denotes the Hamiltonian (5.3). For the number of cut edges of
the partition one can write

C =
1
2
(M + Eg) =

M

2
(1 − 2Q2), (5.5)

with Eg denoting the ground state energy of (5.3) and it is clear that Q2

measures the improvement of the partition over a random assignment into
groups.

Formally, (5.3) corresponds to a Sherrington–Kirkpatrick (SK) model of a
spin glass [3]

H = −
∑

i<j

JijSiSj , (5.6)

with couplings of the form

Jij = (Aij − γpij). (5.7)

Different from the SK model, however, the couplings are not drawn from a
symmetric distribution, but there exist a few strong ferromagnetic couplings
along the links of the network and many anti-ferromagnetic couplings between
unconnected nodes. It is convenient to differentiate between the two and define

J+
ij = 1 − γpij , J−

ij = −γpij and J = J+
ij − J−

ij = 1. (5.8)

Note that J = 1 regardless of the choice of connection model and the pa-
rameter γ. The coupling distribution qij is now determined completely by the
ensemble of networks we are considering. Recall that connection model pij

describes the probability for an edge to be absent or present in a particular
realization of the network and hence parameterizes an ensemble of networks.

The probability density function of the coupling distribution qij(Jij) be-
tween two nodes i and j can then be written as

qij(Jij) = pijδ(Jij − J+
ij ) + (1 − pij)δ(Jij − J−

ij ). (5.9)

Note the mean of this distribution is determined by γ and the average value
of pij :

[Jij ] = pijJ
+
ij + (1 − pij)J−

ij = (1 − γ)pij , (5.10)

where the symbol [·] denotes an average over the graph ensemble. For the
variance of qij , we find

σ2
ij = pij(J+

ij − [Jij ])2 + (1 − pij)(J−
ij − [Jij ])2 = pij(1 − pij), (5.11)

which is independent of γ.
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In order to deal with uncorrelated graphs of arbitrary degree distribution,
a connection model of the form

pij =
gigj

〈g〉N (5.12)

is chosen, i.e., we assume that the probability of two nodes being connected
depends only on the product of some variable gi associated with each node i,
a trick that has been introduced in Ref. [4]. The distribution p(g) of the gi is
supposed to be known. We further assume that the gi are such that [Jij ] and
[σ2

ij ] (to leading order) scale as 1/N .
Note that due to the normalization condition on the connection model∑

ij pij = 〈k〉N we have two conditions on p(g). The first is that
∑

i gi =
√
〈k〉〈g〉N from which directly follows that 〈g〉 =

√
〈k〉〈g〉. Second, the

variance of qij must be positive for all pairs of nodes which requires that
gigj < 〈g〉N . This condition translates into the fact that 〈g2〉 < 〈g〉N , i.e., the
second and higher moments of g do not diverge faster than the network size.
Both of these observations and the fact that pij factorizes are crucial for the
following developments. An obvious choice is of course to set gi = ki, i.e., to
assume the vertex weights equal to the degrees of the vertices. Then, the first
condition on p(g) is trivially fulfilled. Provided that the degree distribution
also fulfills the second requirement, the following results are valid.

The goal is now to calculate the ground state energy Eg averaged over the
ensemble of graphs with a given degree distribution, i.e., those described by
the connection model pij and a given degree distribution. From F = −β−1 ln Z
one sees that it is necessary to calculate the logarithm of the partition function
Z. Instead of doing so directly it is easier to use the replica trick [3, 5]:

[lnZ] = lim
n→0

[Zn] − 1
n

, (5.13)

where the symbol [·] denotes an average over the graph ensemble. So instead
of calculating the logarithm of the partition function, it is only necessary to
calculate the n-th power of it which turns out to be analytically tractable.
The n-th power is written as

Zn = Trn exp

⎧
⎨

⎩
β

n∑

α

∑

i<j

JijS
α
i Sα

j

⎫
⎬

⎭
. (5.14)

Here Trn denotes the trace over the n replicated spins, i.e.,

Trn =
1∑

S1
1=−1

1∑

S2
1=−1

...

1∑

Sn
1 =−1

...

1∑

S1
N=−1

1∑

S2
N=−1

...

1∑

Sn
N=−1

. (5.15)

The average over the graph ensemble is now, with the help of (5.9), written as

[Zn] =
∫ ∏

i<j

(dJijqij(Jij)) Trn exp

⎧
⎨

⎩
β

n∑

α

∑

i<j

JijS
α
i Sα

j

⎫
⎬

⎭
. (5.16)
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Each of the integrals can be drawn into the trace and by rewriting the sum
in the exponential also as a product, this can be reformulated as

[Zn] = Trn
∏

i<j

∫

exp

{

β

n∑

α

JijS
α
i Sα

j

}

qij(Jij)dJij . (5.17)

Using (5.9) to perform the integrals this is reduced to

[Zn] = Trn
∏

i<j

[

pij exp

{

βJ+
ij

n∑

α

Sα
i Sα

j

}

+ (1 − pij) exp

{

βJ−
ij

n∑

α

Sα
i Sα

j

}]

,

(5.18)
which is conveniently rewritten as

[Zn] = Trn
∏

i<j

(1 − pij) exp

{

βJ−
ij

n∑

α

Sα
i Sα

j

}

×
[

1 +
pij

1 − pij
exp

{

β(J+
ij − J−

ij )
n∑

α

Sα
i Sα

j

}]

. (5.19)

Now p0 = pij

1−pij
is defined, keeping in mind that it depends on both i and j.

Further, recalling J = J+
ij − J−

ij = 1, expression (5.19) is rewritten using the
identity

∏
a = exp ln

∏
a = exp

∑
ln a as

[Zn] = Trn exp

⎡

⎣
∑

i<j

ln(1 − pij) + βJ−
ij

n∑

α

Sα
i Sα

j

+ ln

(

1 + p0 exp

{

βJ
n∑

α

Sα
i Sα

j

})]

. (5.20)

Let us concentrate on the last term involving ln(1 + p0 exp) and write the
logarithm and exponential as a series. One finds

ln

(

1 + p0 exp

{

βJ

n∑

α

Sα
i Sα

j

})

=
∞∑

l=1

−1l−1

l

(

p0 exp

{

βJ

n∑

α

Sα
i Sα

j

})l

(5.21)
for the logarithm and

exp

{

βJ
n∑

α

Sα
i Sα

j

}l

=
∞∑

k1=0

∞∑

k2=0

...
∞∑

kl=0

(βJ)k1+k2+...+kl

k1!k2!...kl!

(
n∑

α

Sα
i Sα

j

)k1+k2+···+kl

(5.22)

for the exponential. Putting expression (5.22) and (5.21) together and regroup-
ing the terms according to the exponent of βJ , one finds for k1+k2+· · ·+kl = 0
the following coefficient:
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∞∑

l=1

−1l−1

l
pl
0 = ln(1 + p0). (5.23)

For (βJ)1, i.e., for k1 + k2 + · · ·+ kl = 1, there exist l possibilities for each of
the km to be non-zero. Hence, for the second coefficient one finds

βJ

n∑

α

Sα
i Sα

j

∞∑

l=1

−1l−1

l
lpl

0. (5.24)

For (βJ)2, i.e., k1 + k2 + · · · + kl = 2, there exist l(l − 1)/2 possibilities for
2 of the km to be one and the rest zero and there exist l possibilities for one
of the kn to be two. In the last case, the km! terms introduce a factor of 1/2
and one is left with l2/2 terms with βJ raised to the power of 2. Therefore,
the third coefficient is

(βJ)2
(

n∑

α

Sα
i Sα

j

)2
1
2

∞∑

l=1

−1l−1

l
l2pl

0. (5.25)

Note that with the help of the geometric series
∑∞

n=1 qn = q
1−q in (5.24), one

can write
∞∑

l=1

−1l−1

l
lpl

0 =
∞∑

l=1

(p2l−1
0 ) −

∞∑

l=1

p2l
0 =

(
1
p0

− 1
) ∞∑

l=1

(
p2
0

)l

=
(

1 − p0

p0

)(
p2
0

1 − p2
0

)

=
p0

1 + p0
= pij . (5.26)

For the second coefficient from (5.25) one can write with the help of (5.24)

∞∑

l=1

−1l−1

l
l2pl

0 = p0
∂

∂p0

∞∑

l=1

−1l−1

l
lpl

0 = p0
∂

∂p0

p0

1 + p0

=
p0

(1 + p0)2
= pij(1 − pij). (5.27)

Using (5.23), (5.26) and (5.27) one can rewrite the term involving ln(1+p0 exp)
from (5.20) in the following way:

ln(1 + p0) + βJpij

n∑

α

Sα
i Sα

j +
(βJ)2

2
pij(1 − pij)

(
n∑

α

Sα
i Sα

j

)2

. (5.28)

Higher orders of (βJ) have all been dropped. The full expression for the par-
tition function (5.20) is then written as
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[Zn] = Trn exp

⎡

⎣
∑

i<j

ln(1 − pij) + ln(1 + p0)

+β
(
J−

ij + pijJ
)∑

α

Sα
i Sα

j +
(βJ)2

2
pij(1 − pij)

(
n∑

α

Sα
i Sα

j

)2
⎤

⎦ .

(5.29)

Keeping in mind the definition of p0 = pij

1−pij
the two ln terms cancel and

(5.29) reduces to

[Zn] = Trn exp

[
∑

i<j

β
(
J−

ij + pijJ
)∑

α

Sα
i Sα

j +
(βJ)2

2
pij(1 − pij)

(
n∑

α

Sα
i Sα

j

)2]

.

(5.30)

Until now, the presented treatment has followed Ref. [1] almost one to one.
Note how the mean and the variance of the coupling distribution have en-
tered the calculation. We could have arrived at this point also by assuming a
Gaussian coupling distribution of the same mean and variance.

At this point, the development deviates, however. The first and second
addend in (5.30) will be treated separately and the factorization of pij =
gigj/〈g〉N is used for the first time:
∑

i<j

β
(
J−

ij + pijJ
)∑

α

Sα
i Sα

j = β(J − γ)
∑

α

∑

i<j

pijS
α
i Sα

j

=
β(J − γ)

N〈g〉
∑

α

1
2

⎡

⎣

(
∑

i

giS
α
i

)2

−
∑

i

g2
i

⎤

⎦

=
β(J − γ)
2N〈g〉

∑

α

(
∑

i

giS
α
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(5.31)

The last term vanishes in the limit n → 0. For the second addend in (5.30)
one finds by neglecting p2

ij vs. pij
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4
.

(5.32)
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In the last line, the term proportional to n2 was dropped as it is much smaller
than the term proportional to n in the limit n → 0. With this, the partition
function can be written in a form which can be reduced by Gaussian integrals:

[Zn] = exp

(
(βJ)2n〈g〉N

4

)

Trn exp

⎧
⎪⎪⎪⎪⎨
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∑
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α
i

)2
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m∗

α

+
(βJ)2
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i

giS
α
i Sβ

i

)2
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q∗

αβ

⎫
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. (5.33)

This is formally equivalent to the SK model [3] except for the gi in the sums
over spins. By using a Hubbard–Stratonovich identity [6]

exp x2 =
∫ ∞

−∞
dm exp(−πm2 − 2

√
πxm) (5.34)

in the following form

exp
(a

2
x2
)

=

√
aN〈g〉

2π

∫ ∞

−∞
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(

−aN〈g〉
2
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N〈g〉axm

)

, (5.35)

the terms of (5.33) are simplified to give
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{
a
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, (5.36)

where the abbreviation a=β(J−γ) is used and x is set to x=
∑

i giS
α
i /
√

N〈g〉.
Further, one finds
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i

}

, (5.37)

with b = (βJ)2. The integration variables mα and qαβ introduced here are
called the order parameters of the system and turn out to have a profound
physical meaning. Let us now focus on what is left under the trace after the
transformation using Gaussian integrals:
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Recalling the fact that the gi describe the nodes, the sum over the nodes can
be replaced by a sum over the distribution of the gi

N∑

i

gi = N
∑

k

p(gk)gk =
∑

k

nkgk, (5.39)

where nk is the number of nodes that have vertex weight gk and p(gk) is the
probability that a randomly drawn vertex has vertex weight gk. Hence, we
can write
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. (5.40)

With this, the trace over an N -site problem from (5.38) has been reduced to
the product of single site traces, one for each type of node with weight gk.
The symbol Trn now represents only the trace over n replicas at a single site.
Again (5.40) is written as an exponential in order to use it for the calculation
of the partition function. Leaving off all the factors which vanish when taking
the limit n to zero, one arrives at

[Zn] = exp

(
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4

)∫ ∏
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(5.41)

The integrand is now of the following form:
∫

dm exp(−Nh(m)). (5.42)

Expanding h(m) around its maximum value at m∗ one has h(m∗ + Δm) =
h(m∗) + O(Δm2) and thus

∫

dm exp(−Nh(m)) ≈ exp(−Nh(m∗)). (5.43)

This method of approximating the integral by the maximum value of the
integrand is called “steepest descent” or “saddle point” method [7]. Applying
this method to (5.41) leads to
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Here, m∗
α and q∗αβ denote the respective values which maximize the integrand.

Next (5.44) is expanded around zero. This is possible by assuming that the
limit n → 0 is taken at fixed N and only after this, the limit N → ∞ is taken.
Keeping only the first order, one arrives at

[Zn] ≈ 1 + nN
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The free energy per spin now becomes −β[f ] = [lnZ] = limn→0([Zn]−1)/nN

− β[f ] = lim
n→0
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4
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. (5.46)

Thus far, one cannot determine the values of mα and qαβ which make the
integrand in (5.41) maximal. However, the free energy must be extremal with
respect to all order parameters since these now characterize the system in
place of the individual spins:

∂[f ]
∂qαβ

= 0, (5.47)

∂[f ]
∂mα

= 0. (5.48)

Taking these derivatives in (5.46) explicitly one finds for (5.47)

(βJ)2〈g〉q∗αβ =
∑

k

p(gk)
1

Trn exp(Lk)
(βJ)2gkTrnSαSβ exp(Lk), (5.49)

which is more conveniently written as

q∗αβ =
1
〈g〉 〈gk〈SαSβ〉Lk

〉k. (5.50)
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Here 〈·〉Lk
is an average with respect to the trace Lk defined in (5.40) and 〈·〉k

is an average over the distribution of vertex weights. It now becomes clear that
the order parameter q∗αβ measures the overlap of spin states between different
replicas weighted by the degree of the nodes. For m∗

α one finds in the same
fashion for (5.48):

m∗
α =

1
〈g〉 〈gk〈Sα〉Lk

〉k, (5.51)

and it is clear that mα corresponds to the magnetization of the system again
weighted by the degree of the nodes.

For the further development one needs to assume some form of depen-
dence of the order parameters of the replica index. The intuitive assumption
is independence, i.e., q∗αβ = q and m∗

α = m independent of the replica index.
This assumption is known as the replica symmetric assumption and turns out
to be wrong because it leads to an unphysical behavior of the ground state
entropy. For reasons of simplicity and since the replica symmetric assumption
is still a good approximation for the ground state energy, it is the method of
choice at this point. The free energy density is then written as

− β[f ] = lim
n→0
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2
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4
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∑
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4

}

. (5.52)

The logarithm of the trace is treated separately:

lnTrneLk = ln Trn exp
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β(J − γ)gkm
∑
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Sα +
(βJ)2gk

2
q

[(
∑

α

Sα

)2

− n

]}

.

(5.53)

Again it is decomposed by a Hubbard–Stratonovich identity and the following
two abbreviations are introduced:

qk = qgk and mk = mgk. (5.54)

One finds

lnTrneLk = ln Trn
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∫
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2
+ O(n2)

)

. (5.55)

Here the Gaussian measure of Dz = exp(−z2/2)/
√

(2π) has been introduced
which results from completing the square in the integrand. Further one has
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H̃k(z) = J
√

qkz +(J −γ)mk. Finally one can write for the free energy density
by taking the limit n → 0 and expanding the logarithm of (5.55) around
n = 0:

−β[f ] =
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4
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2
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∑

k
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∫

Dz ln 2 cosh(βH̃k(z)).

(5.56)
The equations of state for the order parameter m denoting the magnetization
is then written as

m =
1
〈g〉
∑

k

p(gk)gk

∫

Dz tanh(βH̃k(z)). (5.57)

For the spin glass order parameter q one finds
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2
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2
√

q

∫
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Partial integration then yields
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∑
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q =
1
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∫

Dz tanh2(βH̃k(z)). (5.59)

These equations of state (5.57) and (5.59) are in exact correspondence with
those derived earlier in (5.51) and (5.50).

Let us now study the case of γ = 1 which corresponds to the maximization
of the Newman modularity Q. From the definition of H̃k(z) and the equation
of state for m it is clear that m = 0 for γ ≥ 1. The natural partition of
a random graph of any degree distribution with finite variance is the equi-
partition. This is true for any temperature. In the ground state for T → 0,
i.e., β → ∞, one further finds from (5.50) that q → 1. The system behaves
just as an ordinary SK model with couplings of zero mean. According to (5.56)
the ground state energy is obtained from the integral

[f ] = − 2
β

∑

k

p(gk)
∫ ∞

0

Dz (βJ
√

qkz + ln(1 + exp(−2βJ
√

qkz))) , (5.60)

where one of the exponentials of the cosh has been factored out and the
logarithm has been taken explicitly. The second term in the integral vanishes
and one is left with

[f ] =

√
2
π

J
∑

k

p(gk)
√

gkq. (5.61)
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With q → 1 the ground state energy is finally given by

lim
β→∞

[f ] = −
√

2
π

J〈g1/2〉. (5.62)

Though (5.62) is a general result, we are particularly interested in the case
gi = ki, because this corresponds to the modularity Hamiltonian. Let us com-
pare (5.62) to the result of Fu and Anderson, who find from the assumption
pij = p [1]

lim
β→∞

[fFA] = −
√

2
π

J
√

Np(1 − p). (5.63)

Since Np ≈ 〈k〉, one sees that FA has a ground state energy proportional
to the square root of the average degree, while the treatment presented here
results in a ground state energy proportional to the average square root of
the degree. Since the square root is a concave function, we see that the new
approximation results in higher energies for any degree distribution.

The modularity of the ground state partition into two equal-sized parts is
then Q2 = −[f ]/〈k〉:

Q2 =

√
2
π

J
〈k1/2〉
〈k〉 . (5.64)

For comparison, the modularity resulting from FA would be

QFA
2 =

√
2
π

J

√
1 − p

〈k〉 . (5.65)

For graphs in which every node has the same degree, the new formulation
presented here in (5.64) and the FA result (5.65) coincide. The following nu-
merical experiments will show the adequacy of (5.62) for a number of different
degree distributions.

5.2 Numerical Experiments

For comparisons with numerical experiments the k-independent part of the
ground state energy of the SK model U0 =

√
2/π = 0.798 [3] was replaced by

its replica symmetry breaking counterpart U0 = 0.765 from Ref. [8]. This sim-
ply improves the accuracy of our estimates but does not change the qualitative
behavior of our predictions.

Random test networks with different degree distributions were created.
First, results were checked on Erdős–Rényi (ER) graphs [9, 10] with link prob-
ability pij = p and different average degree. Figure 5.1 shows the results of this
experiment with networks of N = 10, 000 nodes and average degree between
3 and 20. The Hamiltonian (5.1) was minimized using simulated annealing
[11]. As expected, the ground state was found to have zero magnetization. It
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Fig. 5.1. Numerical experiments for ER graphs with N = 10, 000 nodes and varying
average degree 〈k〉. The correction of the cost function due to optimization Q2 is
given in units of the SK ground state energy U0. The new formula (5.64) improves
the results (5.65) of Fu and Anderson (FA) [1] over the whole range of values and
in particular for small average degrees.

is remarkable that (5.64) leads to an improved estimate even for ER random
graphs. For large 〈k〉, the two approximations converge as would be expected.

The second ensemble of degree distributions is that of scale-free networks
with N = 10, 000 nodes and a degree distribution of the form p(k) ∝ k−κ.
The maximum possible degree was set to 1000 and the graphs were composed
using the Molloy–Reed algorithm [12]. The second moment of the distribution
exists for all κ ≥ 3. For the experiments κ = 3 was chosen. In order to produce
graphs of different average degree, a minimum degree kmin was introduced,
such that p(k < kmin) = 0 with 2 ≤ kmin ≤ 12. Figure 5.2 shows the result of
this experiment. As expected, FA’s formula and (5.64) scale identically with
the density of the network and approximations are better for denser graphs.
Clearly, (5.64) approximates the data points better.

Finally, a second class of scale-free networks is studied. Introducing a kmin

may have been a too drastic step, as it excludes all nodes of small degree
from the network. Therefore, the degree distribution is modified to p(k) =
(k + Δk)−κ. Using κ = 3 as before and varying Δk between 1 and 20, the
networks used for the experiments shown in Fig. 5.3 were obtained. Here also
the scaling of the cut-size with graph density is different and the improvement
of the estimation from (5.64) over FA grows with the average degree in the
network.



82 5 Modularity of Dense Random Graphs

3 5 10 20
<k>

0.15

0.2

0.3

0.4

0.5
Q

/U
_0

FA
(5.64)

Experiment

Fig. 5.2. Numerical experiments for scale-free networks with N = 10, 000 nodes
and p(k) ∝ k−3. Different average degrees were generated by setting p(k) = 0 for
k < kmin with 2 ≤ kmin ≤ 12. The formula by FA (5.65) [1] underestimates the
cut size over the whole range of values and the improvement with (5.64) is roughly
constant over the whole range of data points.
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Fig. 5.3. Numerical experiments for scale-free networks with N = 10, 000 nodes
and p(k) ∝ (k + Δk)−3. Different average degrees were generated by varying Δk
between 1 ≤ Δk ≤ 20. Again, the formula by FA (5.65) underestimates the cut size
over the whole range of values. The improvement with (5.64) is larger for larger
values of 〈k〉.
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In all three cases, the formula by FA underestimates the cut size of the par-
titioning problem and overestimates the modularity. Hence, (5.64) is proposed
as a tighter lower bound on the partitioning problem.

Let us illustrate the contrast between (5.64) and (5.65) in a different way.
Both formulas suppose a dependence of the modularity on the degree dis-
tribution. If we divide the empirically found modularity by this presumed
dependence, we should find straight lines corresponding to the pre-factors in
(5.64) or (5.65) only. Figure 5.4 shows the same data points as in Figs. 5.1, 5.2
and 5.3, but rescaled according to (5.65) on the left and according to (5.64)
on the right. While using the link density as a parameter as proposed by FA
does not lead to a universal curve for the different degree distributions, using
the ratio of 〈k1/2〉/〈k〉 does collapse the data points onto a universal curve.
We see that the denser the networks, the better our approximation and that
using the replica symmetry breaking value of U0 improves our accuracy.

Our results from the case of bi-partitioning generalize in a straightforward
way to the case of q-partitioning and we can simply replace the scaling from
the formulas by Kanter and Sompolinsky (KS) [13] or Lai and Goldschmidt
[14]. The expectation value for the maximum modularity of a random graph
with arbitrary degree distribution is then [15]

Q = 0.97
〈
√

k〉
〈k〉 . (5.66)

The factor of U0 = 0.97 corresponds to the ground state energy of the Potts
glass in the one-step RSB treatment as calculated by KS [13, 15]. Figure 5.5
shows the maximum modularity obtained when minimizing the Hamiltonian
(5.1) in the same graphs as used in Figs. 5.1, 5.2 and 5.3 but with the number
of communities q as a free parameter. Again, we see that plotting Q in units
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Fig. 5.4. The same data points as in Figs. 5.1, 5.2 and 5.3 for Erdős–Rényi random
graphs and two forms of a scale-free (SF) degree distribution, see text for details.
Left : Scaling Q in units of

√
(1 − p)/Np as suggested by (5.65). Right : Scaling Q

in units of 〈
√

k〉/〈k〉 collapses the data points onto one universal curve as expected
from (5.64). The dashed and solid lines correspond to U0 in the replica symmetric
(RS) and replica symmetry breaking (RSB) case, respectively.
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Fig. 5.5. Numerical experiments maximizing the modularity in random graphs of
different topologies (Erdős–Rényi (ER) random graphs and two forms of a scale-
free (SF) degree distribution, see text for details). Scaling Q in units of 〈

√
k〉/〈k〉

collapses the data points onto one universal curve as expected from (5.64). The solid
line corresponds to ground state energy U0 of the Potts glass in one-step replica
symmetry breaking approximation due to Kanter and Sompolinsky [13]. The dashed
line corresponds to an estimate obtained from a recursive bi-partitioning along the
lines of (4.16) using (5.64).

of 〈
√

k〉/〈k〉 collapses the data points onto a single universal curve. The ap-
proximation of the universal value of U0, however, is much slower. This was
already observed in the last chapter and can be explained by the fact that
sparser graphs tend to cluster into more modules than predicted by KS. This
leads to a higher number of degrees of freedom which then tend to accommo-
date better for fluctuations in the link structure of sparse graphs which lead
to relatively higher modularities or lower cut sizes than expected for denser
graphs. Since the rescaling of the modularity has made the data points from
all topologies collapse onto a single universal curve, we can employ a recursive
estimate (4.16) using (5.64) several times as also outlined in the last chapter.
It is interesting to note that once we have collapsed the data onto a universal
curve, we can use the recursive estimate from the convenient ER graphs to
give analytical bounds for other topologies as well.

The above experiments show that the notion of “dense” graphs already
applies to those with an average degree of 5 and above. Of course, the results
by FA represent a very early result used for comparison in the analysis. It
should not go unmentioned that a large amount of work has gone into solving
the graph partitioning problem on sparse graphs or in providing replica sym-
metry breaking solutions. All of this work, however, was focused on ER graphs
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[16–19] or Bethe lattices [20–24] and resulted in improvements of the approxi-
mation as a function of the average connectivity. However, 〈k〉 is characteristic
only for graphs with a Poissonian degree distribution or fixed degree.

An approach different from the replica method can also be taken via the
cavity method [25–27]. There, however, the solution of self-consistent equa-
tions for the local field distribution would be necessary for every degree dis-
tribution. This allows for a more accurate estimation of the partitioning cost
of graphs with arbitrary degree distribution, but does not result in formulas
as handy as those presented here. This method gives good approximations to
sparse graphs with loops of length O(ln N), i.e., locally tree-like graphs, and
hence is complementary to the replica treatment. It will be presented in the
following chapter.
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6

Modularity of Sparse Random Graphs

The connection between community detection and graph partitioning has been
shown in the last chapters as well as the importance of giving expectation val-
ues of the modularity or cut size for partitions of random graphs. However, all
the approximation formulas given up to this point have assumed dense graphs
for which the distribution of local fields in the ground state can be approx-
imated by a Gaussian. In this chapter, this approximation will be dropped
and the distribution of local fields will be calculated explicitly for any degree
distribution.

In the last chapter, the problem of graph partitioning was interpreted as
finding a ground state of an infinite range spin glass with a coupling distri-
bution of zero mean. It can also be interpreted as finding the ground state of
a ferromagnetic q-state Potts model [1] under the constraint of zero magneti-
zation. This is the approach taken in this chapter. Note that now the system
is a sparse system. Couplings exist only between connected spins. Further, it
is assumed that the loops in the graph are long (O(ln N)), i.e., there exist
hardly any triangles, etc. This is the case for any sparse random graph in the
thermodynamic limit. Such graphs are called locally tree like.

A number of results exist for graphs with fixed connectivity [2–7]. Here
a statistical mechanics approach to the problem of q-partitioning a locally
tree-like graph is presented that can deal with arbitrary degree distributions
and also allows for correlations of the degrees of neighboring vertices.

6.1 Graph Partitioning Using the Cavity Method

The statistical mechanics formulation of the q-partitioning problem is done
via the following ferromagnetic Potts Hamiltonian:

HF ({σ}) = −
∑

i�=j

Jijδ(σi, σj), (6.1)
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where Jij is the {0, 1} adjacency matrix of the graph and σi denotes the Potts
spin variable with σi ∈ {1, 2, ..., q}. Once one finds the ground state under the
constraint

∑
i δ(σi, τ) = N/q for all τ ∈ {1, 2, ..., q}, one can write the total

number of cut edges C in the system using the ground state energy Eg of the
above Hamiltonian (6.1):

Cq = M + Eg = M

(
q − 1

q
− Qq

)

. (6.2)

Note the difference to (5.5). Also note that the modularity of the q-partition
Qq can be expressed via Hamiltonian (6.1) as

Qq = −HF

M
− 1

q
. (6.3)

This expression is only valid for magnetization zero, i.e., an exact q-partition.

6.1.1 Cavity Method at Zero Temperature

The ground state energy of (6.1) can be calculated by applying the cavity
method at zero temperature following the approach presented by Mezard and
Parisi [8] in the formulation for a Potts model as presented by Braunstein
et al. [9, 10] for coloring random graphs. The energy of a system of N spins
is written as dependent on a “cavity spin” σ1 via the “cavity field” h1:

EN (σ1) = A −
q∑

τ=1

hτ
1δ(τ, σ1). (6.4)

Note that hτ
1 takes only integer values, if Jij is composed of only {0, 1}. The

components of the cavity field hi denote the change in energy of the system
with a change in spin i. In general, these are different from the “effective fields”∑

j Jijσj acting on spin σi, which are used to calculate the magnetization.
Adding a new spin σ0 connected to σ1, the energy of the now N + 1 spin
system is a function of both σ1 and σ0:

EN+1(σ1, σ0) = A −
q∑

τ=1

hτ
1δ(τ, σ1) − J10δ(σ1, σ0). (6.5)

One can now write this expression in such a way that it only depends on
the newly added cavity spin σ0:

EN+1(σ0) = min
σ1

EN+1(σ1, σ0) ≡ A − w(h1) −
q∑

τ=1

ûτ (J10,h1)δ(τ, σ0). (6.6)
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The functions w and û take the following form:

w(h) = max(h1, ..., hq), (6.7)
ûτ (J,h) = max(h1, ..., hτ + J, ..., hq) − w(h). (6.8)

From (6.8) one sees that ûτ (h) is one, whenever the τth component of h is
maximal with respect to all other components in h and zero otherwise. Due to
possible degeneracy in the components of h, the vector û(h) may have more
than one non-zero entry and is never completely zero.

One can interpret this “cavity bias” û(J10,h1) as a new cavity field h0

which describes the change of the energy of the system under a change of σ0.
The field h1 which was formerly acting only on σ1 has now been propagated
to σ0 and acts there as cavity field h0 = û(J10,h1). In general cases where
the new spin σ0 is connected to d different cavity spins, the cavity biases have
to be combined linearly to give the cavity field h0 =

∑d
i=1 û(Ji0,hi).

With this, one “iteration” has just been completed and the basic idea be-
hind the Bethe–Peierls approach [11], which is the foundation of the cavity
method, has been demonstrated. The goal is to find a distribution of the cavity
fields Pcav(h) which is stable under this iteration procedure and site indepen-
dent. For trees this is granted, and for graphs which are locally tree like, i.e.,
without short loops, this is at least approximately true and corresponds to the
assumption of a replica symmetric ground state. It turns out that the entire
problem of finding the ground state properties of the system is reduced to the
existence and actual finding of the distribution of the cavity fields.

The iteration procedure can also be interpreted as a form of message pass-
ing. The spins σi see cavity fields hi in the absence of spin σ0 and send
“messages” û(Ji0,hi) along the link Ji0 to spin σ0. Spin σ0 collects these mes-
sages to form a cavity field which is then passed to some other node j in the
form of a message. The cavity field is hence a field that a node i sees in the
absence of node j. It is transformed into a message and passed from node i
to j. A node of degree k sees k different cavity fields, each made from k − 1
messages. There are hence twice as many cavity fields and messages as there
are links in the graph. The cavity fields and messages “live” on the edges of
the graph.

At this point let us recall the definition of the excess degree of a node
from Sect. 1.2 and Ref. [12]. The excess degree d is nothing but the number of
links a node i has minus one: di = ki − 1 and hence the number of messages
or inputs that are used in the calculation of the ki cavity fields of that node.
Since the cavity fields and biases live on the edges of the graph, drawing from
their distribution and averaging over their distribution means drawing from
and averaging over the set of edges.

The number of messages that are used in the calculation of the cavity field
for a particular edge is distributed as q(d), the probability of finding a node
of excess degree d by following a randomly chosen link. Hence, it must satisfy
q(d) ∝ (d + 1)p(d + 1), the degree of the node k = d + 1 times the probability
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of drawing a node of degree k at random from the set of nodes. Correctly
normalized one has

q(d) =
(d + 1)p(d + 1)
∑

k p(k)k
=

(d + 1)p(d + 1)
〈k〉 . (6.9)

Only for the case of a Poissonian degree distribution p(k) = e−〈k〉 〈k〉k

k! one
finds q(d) = p(d), i.e., the excess degree is distributed in the same way as the
degrees themselves.

With these definitions, one can write self-consistent equations for the prob-
ability distributions of the cavity fields Pcav(h) and the cavity biases Q(u). Do
not confuse the distribution of messages Q and the modularity Q. Note, how
q(d), the distribution of the excess degree, enters into the equation. Further-
more, one can write equations for the distribution of effective fields Peff(h)
that “live” on the nodes of the graph. This distribution is needed later in the
calculation of the ground state energy. Note how p(k), the degree distribution,
enters into its calculation:

Pcav(h) =
∞∑

d=0

q(d)
∫ d∏

i=1

(dqhiPcav(hi)) δ

(

h −
d∑

i=1

û(hi)

)

, (6.10)

Q(u) =
∫

dqhPcav(h)δ(u − û(h)), (6.11)

Q(u) =
∞∑

d=0

q(d)
∫ d∏

i=1

(dquiQ(ui)) δ

(

u − û

(
d∑

i=1

ui

))

, (6.12)

Peff(h) =
∞∑

k=0

p(k)
∫ k∏

i=1

(dqhiPcav(hi)) δ

(

h −
k∑

i=1

û(hi)

)

, (6.13)

Peff(h) =
∞∑

k=0

p(k)
∫ k∏

i=1

(dquiQ(ui)) δ

(

h − û

(
k∑

i=1

ui

))

. (6.14)

As a special case, the distinction between effective fields and cavity fields is ir-
relevant for graphs with Poissonian degree distribution because of q(d) = p(d).
Note that these equations can be solved via an iteration procedure. Plugging
a test function, e.g., Pcav(h), into the right-hand side of (6.10) one obtains a
new Pcav(h) after integration and summation. This process is repeated until
a fix-point distribution Pcav(h) is reached which is a solution of (6.10).

The energy of the system is then calculated from the contribution of a
site addition ΔE1, i.e., adding a vertex of degree k to the graph, and the
contribution of a link removal ΔE2 as outlined in Ref. [8]. The change in
energy due to a site addition is

ΔE1 = −
∞∑

k=0

p(k)
∫ k∏

i=1

(dquiQ(ui))w

(
k∑

i=1

ui

)

= −
∫

dqhPeff(h)w (h)

(6.15)
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Note that the site addition is different from the iteration procedure, as now
the full degree of the vertex and the effective field plays a role. The energy of
a link addition (negative link removal) is

ΔE2 =
∫

dqh1d
qh2Pcav(h1)Pcav(h2) (w(h1) − w(h1 + û(h2))) . (6.16)

Here, the cavity fields at the ends of the edge to remove play a role. The
energy density of the system is then written as

E = ΔE1 −
〈k〉
2

ΔE2. (6.17)

There is a subtle point here about (6.17). It is necessary to keep the degree
distribution p(k) invariant when going from N to N +1 sites by adding a new
site with k links drawn from p(k). With the k links from the new node, one
increases the total number of stubs (ends of edges) of the N old nodes by k,
therefore changing the degree distribution of the old nodes, which already is
p(k) and should be kept invariant. Hence, one needs to cut k/2 links among
the old N nodes in order to create the k stubs to which the new node can be
connected without changing the degree distribution. Averaged over p(k), one
needs to cut 〈k〉/2 links before adding the new node as in (6.17). Note that
these expressions are completely general and do not depend on the specific
Hamiltonian under study as this is encoded in the specific form of û and w
[8].

6.1.2 Symmetry Conditions

The description of the system in terms of cavity fields and biases is equivalent
and we have chosen a formulation in terms of biases or messages only. We
have already seen from (6.8) that the possible messages are the corners of
a hypercube in q dimensions except the corner at 0. Therefore, there are in
principle 2q − 1 different possible messages. Since one wants to find solutions
of an equipartitioning problem, one is only interested in solutions which are
symmetric under an arbitrary permutation of the spin indices, i.e., the solution
must be fully color symmetric. An ansatz that bears this symmetry is

Q(u) = ητ with τ = ‖u‖2. (6.18)

This means that one is simply counting the number of ones in a message
and this number is represented by the index of the order parameter ητ . All
messages with the same number of ones are equally probable. Hence, one only
needs to determine q different probabilities ητ , of which q−1 are independent
due to the normalization constraint:

q∑

τ=1

(
q
τ

)

ητ = 1. (6.19)
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The paramagnetic solution ηq = 1 and ητ �=q = 0 is always possible but shall
not be taken into consideration as it is unstable.

With these considerations only, we can already draw a conclusion on the
dependency of ΔE2 on the order parameters. From (6.16) we see that the
integrant is only non-zero whenever u1 and u2 have at least one non-zero
entry in common. Hence ΔE2 is the negative of one minus the probability
that u1 and u2 with τ1 and τ2 non-zero entries, respectively, do not have an
overlapping one:

ΔE2 =
q∑

τ1=1

q−τ1∑

τ2=1

q!
τ1!τ2!(q − τ1 − τ2)!

ητ1ητ2 − 1. (6.20)

This expression may also be read as the negative of the probability that two
nodes may “agree” on a common spin state to satisfy the link between them.
The above expression holds for any distribution of excess degrees.

As an example, let us study a network with fixed connectivity, a Bethe
lattice with k = 3 and q = 2, i.e., a bi-partition. The excess degree of every
node is two. The self-consistent equation for the messages can be cast into a
system of non-linear polynomial equations for the q = 2 order parameters:

η1 = η2
1 + 2η1η2, (6.21)

η2 = 2η2
1 + η2

2 , (6.22)
1 = 2η1 + η2. (6.23)

It is instructive to interpret this system of equations. Every node has two
“inputs” over which it can receive messages and one “output”. The first equa-
tion means a node sees a non-degenerate maximum in the cavity field with
probability η1, because it either has two also non-degenerate inputs pointing
in the same direction (this happens with probability η2

1) or it has one non-
degenerate input and one twofold-degenerate input (which happens with prob-
ability 2η1η2). The second equation means a node sees a twofold-degenerate
cavity field with probability η2, because it has two non-degenerate inputs
pointing in different directions (this happens with probability 2η2

1) or it has
two twofold-degenerate inputs (which happens with probability η2

2). The third
equation is simply the normalization condition. The solution of this system is
given by η1 = 1/3 and η2 = 1/3. Formally, these equations are equivalent to
those derived for an Ising spin glass with couplings Jij ± 1 on a Bethe lattice
and the results can be applied immediately [8].

6.1.3 Bi-partitioning

Due to the large number of combinations of messages for large k and the large
number of different messages for large values of q, it was not possible to find a
simple analytic expression for the coefficients in the self-consistent calculation
of the order parameters η1...ηq for arbitrary k and q. The expression is simple
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though, if only two spin states are allowed. The probability for a cavity field
h = (h1, h2) seen by a node of excess degree d is expressed as

P d
cav(h1, h2) =

d!
(d − h1)!(d − h2)!(h1 + h2 − d)!

η2d−h1−h2
1 (1 − 2η1)h1+h2−d.

(6.24)
The average over the excess degree distribution then reads

Pcav(h1, h2) =
∞∑

d=0

q(d)P d
cav(h1, h2). (6.25)

Recall that ητ is the probability that the maximum component of the
cavity field is τ -fold degenerate. One then has

η1 =
∞∑

h1=1

h1−1∑

h2=0

Pcav (h = (h1, h2)) , (6.26)

η2 = 1 − 2η1 =
∞∑

h=1

Pcav (h = (h, h)) , (6.27)

which can also be understood as a self-consistent equation for the order param-
eters ητ and can be solved easily in an iterative manner again. For a partition
into only two parts, we only need to determine two order parameters η1 and
η2. The normalization condition (6.19) reduces the problem to determining
only a single order parameter as η2 = 1 − 2η1. We formulate the problem in
terms of η2:

η2 =
∞∑

n0=0

∞∑

n=0

q(n0 + 2n)
(n0 + 2n)!

n0!n!n!

(
1 − η2

2

)2n

ηn0
2 (6.28)

=
∞∑

d=0

q(d)
� d

2 �∑

n=0

d!
(d − 2n)!n!n!

(
1 − η2

2

)2n

ηd−2n
2 . (6.29)

These equations can be easily iterated for any excess degree distribution q(d)
to find the order parameters of a bi-partition to arbitrary accuracy. In case
of a Poissonian distribution q(d) = e−λλd/d! with mean λ, the two sums in
(6.28) decouple and we find

η2 = e−λ(1−η2)I1(0, λ(1 − η2)), (6.30)

where I1(0, x) is the modified Bessel function of the first kind. The energy per
link ΔE2 is given by ΔE2 = 2η2

1 − 1 according to (6.20).
Figure 6.1 shows the order parameter η1 and the ground state energy

for Bethe lattices and ER random graphs with different connectivities. Note
how the values of η1 for Bethe lattices with even connectivity (odd excess
degree) always lie above the curve for ER random graphs, while those with
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Fig. 6.1. The order parameter η1 for ER random graphs and Bethe lattices vs. the
average connectivity.

odd connectivity (even excess degree) lie below them. This is understandable
from the fact that odd excess degrees favor an asymmetry in the cavity fields
and hence favor η1. The difference between Bethe lattices and ER random
graphs becomes negligible for larger degrees.

In order to find the cut size we need an expression for the ground state
energy. The energy per nodes is given as

ΔE1 = −
∞∑

n0=0

∞∑

n1=0

∞∑

n2=0

p(n0+n1+n2)
(n0 + n1 + n2)!

n0!n1!n2!
ηn0
0 ηn1+n2

1 [n0+max(n1, n2)].

(6.31)For any degree distribution p(k), this can be rewritten as

ΔE1 = −〈k〉(η2 + 2η1(η1 + η2) + X) = −〈k〉(1− 2η2
1 + X) = −〈k〉(X −ΔE2),

(6.32)
where we have used the implicit equations for the order parameters η1 and η2

from (6.28) and introduced a function X, which is defined as

X =
1
〈k〉

∞∑

n0=0

∞∑

n=0

p(n0 + 2n)
(n0 + 2n)!

n0!n!n!
η2n
1 ηn0

2 n (6.33)

=
1
〈k〉

∞∑

k=2

p(k)
� k

2 �∑

n=0

k!
(k − 2n)!n!n!

η2n
1 ηk−2n

2 n. (6.34)

In case of a Poissonian degree distribution p(k) with mean λ we can write for
X even shorter

Xλ = η1e
−2λη1I1(1, 2λη1). (6.35)
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Finally, we can write for the ground state energy per node (6.17) and modu-
larity Q2 (6.3) of the bi-partition the following expressions:

E = −〈k〉
2
(
1 + 2(X − η2

1)
)
, (6.36)

Q2 =
1
2

+ 2(X − η2
1). (6.37)

We thus have a formulation which depends entirely on the order parameters.
Since the energy per node can never exceed −〈k〉/2 and η1 is bounded by
η1 < 1/2 we have a bound on X which is X ≤ 1/4. With these expressions
we can find expected cut sizes for the bi-partitioning problem and expected
modularities for random networks of arbitrary degree distributions.

Let us compare these results to numerical experiments. Banavar et al. [13]
have performed numerical studies of the graph bi-partitioning problem for
Bethe lattices. For lattices of varying degree, Table 6.1 compares the results
of the cavity method Q2 and the approximation formula (5.64) which is in the
case of fixed connectivity equivalent to the approximation by Fu and Anderson
(5.65) QFA

2 , with the numerical results by Banavar et al. QBanavar [13]. For the
case of d+1 = 3, the problem has also been studied by Wong and Sherrington
[3, 6], Mezard and Parisi [4] and De Oliveira [14].

One can observe that the results of the cavity method give an im-
proved estimate over the replica results (5.64) or (5.65) for sparse graphs.
The agreement with the numerical results is within a few percent and can
be improved by resorting to the replica symmetry breaking formalism [8].
For denser graphs, the finite size effects of the numerical simulations become
more pronounced. The largest network studied by Banavar et al. had only
4000 nodes. Since the cavity method relies on the absence of short loops
the approximation will inevitably break down. This explains why for denser
graphs the replica results give the better approximation, the networks studied
by Banavar simply are not exactly tree like for large connectivities.

Table 6.1. Comparison of the numerical results for bi-partitioning random Bethe
lattices of varying connectivity d + 1 = k by Banavar et al. QBanavar [13] and the
results of the cavity method Q2 and those of the replica method by Fu and Anderson
(5.65) QFA

2 [15].

d + 1 η1 Eg Q2 QFA
2 QBanavar

3 0.333333 −1.388889 0.426 0.441 0.420
4 0.4 −1.744 0.372 0.382 0.366
5 0.385604 −2.095665 0.338 0.341 0.332
6 0.416453 −2.427626 0.309 0.312 0.303
8 0.426902 −3.081101 0.270 0.270 0.264
9 0.422281 −3.402895 0.256 0.254 0.250
10 0.434291 −3.715701 0.243 0.241 0.235
15 0.442999 −5.252232 0.200 0.197 0.193
20 0.453388 −6.741082 0.174 0.171 0.168
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The previous chapter suggested via a replica calculation that the modular-
ity of random networks scales universally as 〈

√
k〉/〈k〉. Let us investigate if this

holds true for the results obtained by the cavity method too. Figure 6.2 shows
modularities Q2 of bi-partitions for networks with the same degree distribu-
tions as used in the previous chapter. In particular, we compare the results
for the Poissonian degree distribution of Erdös–Renyi (ER) graphs [16] with
mean λ, i.e., p(k) = e−λλk/k!, with two types of scale-free degree distribu-
tions. The scale free distributions are of the stretched form p(k) ∝ (k+Δk)−γ

(SF Δk) and of the standard form p(k) ∝ k−γ (SF kmin) but with a mini-
mum degree kmin such that p(k < kmin) = 0. We varied Δk between 1 and
50 and kmin between 2 and 30 while using γ = 3 in both distributions. Early
replica calculations for ER graphs [15] had predicted a scaling of the modu-
larity as Q2 = U0

√
(1 − p)/〈k〉 which for p � 1 can be interpreted as scaling

with 〈k〉−1/2. As the left part of Fig. 6.2 shows, this scaling does not hold
universally for the scale-free degree distributions.

The right part of Fig. 6.2 shows that the data points converge to the same
value when plotting Q2 in units of 〈

√
k〉/〈k〉. Thus, the cavity calculation in

this chapter recovers the universal dependence of Q2 on the two moments
〈
√

k〉 and 〈k〉 as found in the last chapter.
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Fig. 6.2. The modularity of bi-partition Q2 in random graphs with different topolo-
gies. We studied graphs with a Poissonian degree distribution p(k) = e−λλk/k! (ER)
and two types of scale-free degree distributions. The first one is a stretched power
law (SF Δk) and has the form p(k) = (k +Δk)−γ with Δk ∈ [17, 18], while the sec-
ond (SF kmin) has the form p(k) = k−γ , but with a varying minimum degree kmin

with kmin ∈ [19, 20]. For both scale-free distributions we choose γ = 3. Left: We plot
the modularity Q2 in units of 〈k〉−1/2 as suggested by earlier replica calculations
(5.65) [15] and find the results to depend on the form of the degree distribution.
Right: We plot the modularity Q2 in units of 〈

√
k〉/〈k〉 as suggested by (5.64) and

find that this choice collapses the data onto a universal line in the limit of dense
graphs.
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6.1.4 Limit of Dense Graphs with Poissonian Degree Distribution

The special form of the Poissonian degree distribution has led to numerous
simplifications so far. Two crucial simplifications are the cancellations of the
term (n0 + 2n)! which decouples the sums in (6.28) and the fact that for this
distribution the degree and excess degree distributions are indeed the same
which simplifies the calculation of the energy per node in (6.33).

These simplifications allow us to investigate the scaling of the ground state
energies of the bi-partitioning problem for Poissonian graphs in the limit of
large average degree. We will show that this allows us to recover the results
of the replica calculations of Fu and Anderson [15] plus correction terms. The
Bessel functions in (6.28) can be approximated for large arguments x � n
and fixed n as

I1(n, x) ≈ ex

√
2πx

. (6.38)

Using this approximation we obtain for the order parameter η1 the following
equation:

2η1 ≈ 1 − (4πλη1)−1/2. (6.39)

Equation (6.35) is approximated using (6.38) and (6.39) as

Xλ ≈ 1
2

√
1

πλ

√
η1 = η1 − 2η2

1 . (6.40)

Now we expand the solution of (6.39) in powers of 1/λ which leads to an
approximation for η1 and hence η2

1 as

η1 ≈ 1
2
− 1

4

√
2

πλ
− 1

8πλ
+ O(λ−3/2) and (6.41)

η2
1 ≈ 1

4
− 1

4

√
2

πλ
+ O(λ−3/2). (6.42)

This shows how η1 approaches the limit of 1/2 as λ goes to infinity as expected.
Pluggings (6.40), (6.41) and (6.42) into (6.36) leads to

Q2 ≈ 1
2

+ 2(η1 − 3η2
1) ≈

√
2

πλ
− 1

4πλ
+ O(λ−3/2), (6.43)

which is to be compared to the result from the replica calculation of Fu and
Anderson for dense graphs with connection probability p which yielded Q2 =√

2/π
√

(1 − p)/(pN). For small p and identifying λ = pN we see that the
cavity method brings a correction term of the order of 1/λ to the results of
the replica method. We can interpret this result also in terms of whether a
graph is dense or not. As we see, applying a result obtained for a dense graph
gives a result which differs in the order of 1/〈k〉 from the result obtained when
considering a sparse graph.
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6.1.5 q-Partitioning of a Bethe Lattice with three Links per Node

Thus far we have dealt with bi-partitions of graphs with arbitrary degree
distribution as one of the cases where we can write the field equations as a
system of coupled polynomials. The other special case for which this can be
done is a Bethe lattice where every node has exactly k = 3 neighbors. Then,
every edge leads to a node with excess degree d = 2 and we can write for the
order parameters ητ the following equation:

ητ =
τ−1∑

α=1

(
τ
α

)

ηαητ−α + η2
τ + 2ητ

q−τ∑

α=1

(
q − τ

α

)

ητ+α

+
q−τ∑

α=1

q−τ−α∑

β=1

(
q − τ

α

)(
q − τ − α

β

)

ητ+αητ+β . (6.44)

This is easily interpreted. A message with τ non-zero entries can be formed
by combining two messages, one with α < τ and one with τ−α non-zero entries
which do not overlap as in the first term. Then, two messages with exactly τ
non-zero entries may overlap as in the second term. The third term denotes
the possibility of combining one message with τ and one with α > τ non-zero
entries, while the last stands for the possibility of having an overlap of exactly
τ non-zero entries when combining two messages which both have more than
τ non-zero entries.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
q^– 1/2

–1.35

–1.3

–1.25

–1.2

–1.15

–1.1

E
_g

Cavity Method
Linear Fit

Fig. 6.3. Ground state energy per spin of the q-state ferromagnetic Potts Hamil-
tonian under the constraint of zero magnetization for Bethe lattices of connectivity
d + 1 = 3. Data points are taken from Table 6.2.
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With the order parameters at hand, we can write the energy per link
directly using (6.20). For the energy per node, unfortunately, we cannot write
a simple expression for all numbers of parts q and have to calculate ΔE1 by
using Monte Carlo methods. It is interesting to study the ground state energy
and modularity as a function of the number of parts q. Naturally, the absolute
value of the ground state energy decreases as we divide the random lattice
into more and more parts. However, when looking at the modularity, we see
that the term 1/q which we have to subtract from the negative value of the
energy in (6.3) decreases for larger numbers of Q. Plotting Egs vs. q−1/2 in
Fig. 6.3 we observe a linear dependence which together with (6.3) suggests
the existence of an optimal number of q which maximizes the modularity Qq.
Empirically, we find by fitting our data

Eg(q) = E∞ − B
√

q
, (6.45)

with E∞ = −1.141 and B = 0.3496. This is a remarkable result as it shows
that even for large numbers of q we can still satisfy 2.3 of the 3 connections
per node on average. This is not much less than the 2.78 links per node which
can be satisfied when partitioning in only two parts. This also means that
practically every node has two or more links into its own community, which
again means that every random Bethe lattice of connectivity d + 1 = 3 has a
community structure if the definitions of Radicchi et al. are applied. Plugging
(6.45) into (6.3) we can find the number of parts which maximizes Qq as

q∗ =
k2

B2
≈ 74. (6.46)

The dependence of Eg on q as shown here thus leads to an expectation value
for the number of clusters in a random network.

Finally, let us compare these results to replica calculations and numerical
experiments of maximizing the modularity by simulated annealing for Bethe
lattices of size N = 10, 000. Table 6.2 summarizes the results together with
the order parameters obtained for each value of q. Clearly, the results from the
cavity method give a good approximation of the modularity for all numbers
of parts q. The replica treatment of KS in (4.13) exhibits a different behav-
ior. Regardless of the connectivity of the network, maximum modularity is
achieved for q = 5 and modularity decreases with increasing q. The cavity
method, however, suggests that for sparse graphs, modularity increases until
q ≈ 74 for Bethe lattices of connectivity d + 1 = 3 and decreases only then.
The numerical experiments of Chap. 4 (compare Fig. 4.11) have shown that
this behavior generalizes to other kinds of sparse graphs as well. The sparser a
graph, the higher the value of q∗ for which maximum modularity is achieved.
With increasing density of the graph, q∗ decreases to the replica value of
q∗R = 5. The advantage of the cavity method is that it can capture this behav-
ior in a single formalism without the introduction of recursive bipartitionings
as introduced in Chap. 4.
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6.1.6 Population Dynamics Approximation

After our treatment of two special cases, let us now turn to the general case
of partitioning graphs of arbitrary degree distribution into arbitrarily many
parts. The analytical results in the last subsection were obtained either for
only two spin states or for a fixed excess degree of two. In more general cases
we need to use a sampling technique known as population dynamics to find
solutions for P (h) and Q(u) [21].

Recall that the distribution of cavity biases Q(u) is entirely characterized
by q order parameters ητ . The 2q − 1 possible messages all have one of only q
different probabilities of occurrence. Hence, instead of running a population
dynamics algorithm on a population of 2q −1 different messages, we can work
with a population of q different order parameter indices only. Upon drawing an
order parameter from the population, we then generate a message containing
the appropriate number of non-zero entries at random. Every member τ of
the population represents q!/(q − τ)!/τ ! possible messages. In practice, such
an algorithm would run as follows:

1. Start with a population of order parameter indices τ ∈ {1, ..., q}.
2. Draw an excess degree d from the distribution q(d).
3. Draw d order parameter indices τi from the population at random and

generate d messages ui containing τi non-zero entries. All possible q!/(q−
τi)!/τi! messages have the same probability of being generated. This
quenches the equipartition.

4. Calculate the cavity field h0 =
∑d

i=1 ui from these d messages and trans-
form it into a message u0 = û(h0).

5. Determine the order parameter index τ0 of u0, i.e., count the number of
ones in the message.

6. Replace an arbitrarily chosen order parameter index from the population
by τ0.

7. Continue with step 2 until convergence.

This converges to a population of order parameter indices in which every
order parameter is found over-represented by a factor corresponding to its
multiplicity. The symmetry condition is enforced in this algorithm by gener-
ating the appropriate messages for each order parameter randomly with equal
probability.

Note that this procedure is especially suited for connected components of a
graph. Since the distribution of order parameters is enforced to be symmetric,
a balanced cut through all connected components is always enforced. This
might not be the optimal partitioning, if the graph consists of more than one
connected component [23, 24], but here, we are only interested in connected
components, anyway.
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6.2 Recovering Planted Cluster Structures

Until this point, we have been concerned with the maximum value of modu-
larity that we may find in a purely random network. This value may serve as a
reference value when reporting modularity scores on real world networks. But
until now, we were not able to give an actual assessment of the (statistical)
significance of the modularity that we have found in a real world network.
We have seen that once we find a modularity score that exceeds the expecta-
tion value for an equivalent random graph, we can be rather confident that
the modules we find are not the mere result of the clustering algorithms but
represent actual reality in the data. But how confident can we really be? This
section is devoted to answering this question. We will proceed by studying
random graphs with an implanted modular structure and we will investigate
to what extent this known cluster structure may be recovered by an algorithm
maximizing modularity.

For our study, we will consider the following ensemble of random graphs
with built-in cluster structure in the thermodynamic limit of infinitely large
graphs: All nodes in the network belong to one of q pre-assigned classes or
types. We consider equal-sized classes. The degree distribution p(k) is the
same across all types of nodes. The conditional probability that a link with a
node of type s ∈ (1, ..., q) on one end has a node of the same type on the other
end, too, is denoted as p(s|s) = pin, while that of having a node of a different
type r �= s on the other end is denoted as p(r|s) = pout = (1−pin)/(q−1). This
also implies that a fraction pin of all edges in the network lies between nodes of
the same type, while the remaining edges lie between nodes of different type.
This ensemble of networks is entirely parametrized by the number of clusters
q, the internal connection probability pin and the degree distribution p(k).
We consider pin in the range of (1/q, 1) and thus can interpolate smoothly
between completely random graphs without clusters for pin = 1/q and random
graphs with built-in community structure with gradually denser clusters as
pin is increased up to the point of q disconnected components for pin = 1
which form a trivially clustered graph.

Let us consider the built-in or “designed” modularity Qd
q of such a network:

Qd
q = pin − 1

q
. (6.47)

This relation follows from observing that the fraction of links within group s
is simply ess = p(s|s)/q independent of the degree distribution and that as =∑

r ers = 1/q
∑

r p(r|s) and by inserting these relations into the definition of
Q. Now consider an assignment of Potts spin to the nodes in the network that
corresponds exactly to the designed cluster structure or types, i.e., all nodes
of the same type are in the same spins state and all pairs of nodes of different
types are in different spin states. With such a configuration the Hamiltonian
(6.1) would yield an energy per node of
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Ep = −〈k〉
2

pin, (6.48)

which depends only on pin independent of the shape of the degree distribution
or the numbers of parts. Naturally, in the limit of pin → 1 we expect Ed to be
the ground state energy and our pre-assigned cluster structure to represent a
ground state configuration of (6.1), because the individual clusters are con-
nected by only a few links. In this case, we can expect to recover the built-in
cluster structure completely from the spin configuration in the ground state.
In the limit of pin → 1/q we expect the ground state configuration of (6.1) to
be completely uncorrelated with the designed cluster structure, because the
probability for a connection between nodes of the same type is the same as
for nodes of different types and hence we cannot recover the built-in cluster
structure. Between these two extremes, there exists a transition at which the
designed cluster configuration starts to influence the ground state configura-
tion. Since the goal of community detection or graph clustering is to recover a
built-in, but unknown, cluster structure, this transition also marks the onset
of detectable community structure. The näıve expectation is that we should be
able to recover the designed structure when Ed < ERnd, i.e., when the cluster
structure induces a minimum in the energy landscape that is lower than the
ground state energy of the completely random network. We will show that
this is only a rule of thumb and calculate the transition point exactly. We
will further calculate the shape of the transition which will provide us with
an expression for the accuracy of community detection.

We have seen that on our ensemble of random graphs with built-in cluster
structure the problems of partitioning and clustering are identical. For con-
venience, we will hence study it in the language of graph partitioning, i.e.,
interactions between spins only along the edges of the graph plus the hard
constraint of zero magnetization in the ground state.

We can make direct use of the cavity formulation developed earlier in
this chapter. However, there is one more ingredient necessary before we are
finally able to write the cavity equations for our clustered random graphs: We
need to consider the different types of nodes. It is clear that for pin ≈ 1 the
distribution of cavity fields and biases will depend on the type of node from
which the message is sent. Let us define the distribution of incoming messages
on nodes of type s as

Qs
in(u) =

q∑

r

p(r|s)Qr(u) = pinQs(u) +
∑

r �=s

poutQ
r(u). (6.49)

This means that the distribution of the incoming messages on a node of type
s is a mixture of the distributions of the outgoing messages of all types of
nodes parametrized by the conditional probabilities of how the different types
of nodes are connected in our model graph.

With this formulation at hand we are able to write the cavity equations
for our model graph:
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Qs(u) =
∞∑

d=0

q(d)
∫ d∏

i=1

(dquiQ
s
in(ui)) δ

(

u − û

(
d∑

i=1

ui

))

, (6.50)

P s
cav(h) =

∞∑

d=0

q(d)
∫ d∏

i=1

(dqhiQ
s
in(ui)) δ

(

h −
d∑

i=1

ui

)

, (6.51)

P s
eff(h) =

∞∑

k=0

p(k)
∫ k∏

i=1

(dquiQ
s
in(ui)) δ

(

h −
k∑

i=1

ui

)

. (6.52)

Compare these equations to those for the case of purely random networks
(6.10–6.14). In principle, the different types of nodes may have a different
degree distribution as well, but we set aside this further complication for now.
The above formulation is in complete accordance with that presented in Ref.
[25] for the vertex cover problem on networks with degree correlations where
it was first used.

The expressions for the change in energy due to a site addition changes
slightly to

ΔE1 = −
∑

s

1
q

∞∑

k=0

p(k)
∫ k∏

i=1

(dquiQ
s
in(ui))w

(
k∑

i=1

ui

)

(6.53)

= −
∑

s

1
q

∞∑

k=0

p(k)
∫

dqhP s
eff(h)w (h) . (6.54)

The factor 1/q is due to the fact that a fraction of 1/q of all nodes is of type
s in our model of clustered random graphs. The energy needed for breaking
a link is now written as

ΔE2 =
∑

rs

ers

∫

dqh1d
qh2P

r
cav(h1)P s

cav(h2) (w(h1) − w(h1 + û(h2)))

= −
∑

rs

p(r|s)
q

∫

dqu1d
qu2Q

r(u1)Qs(u2)Θ(u1 · u2), (6.55)

where the factor ers = p(r|s)/q is the fraction of edges running between nodes
of type r and s, while Θ denotes the heavyside function with Θ(x) = 1 for all
x > 0 and zero otherwise. Again, ΔE2 can be read as the probability of having
an overlap in the messages u1 and u2. The ground state energy is calculated
as before according to (6.17).

6.2.1 Symmetry Conditions

Our model of clustered random graphs has two limiting cases: pin → 1/q and
pin → 1 which correspond to a completely random network and a network
made of q disconnected parts. First, we consider the case pin → 1/q. This
corresponds to the case of a purely random network and has been treated in
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the previous section. We can then assume Qs(u) does not depend on the type
of node s from which the message is sent. From (6.49) we see immediately that
there is no difference in the distribution of incoming and outgoing messages,
i.e., Qin(u) = Q(u) and we may choose an ansatz for Q as in (6.18).

Let us now consider the other limiting case, pin → 1. Without loss of
generality, we can assume that the ground state is such that nodes of type s
are in spin state s. Hence, the nodes of type s of the network send messages
with only one non-zero entry in component s of u, i.e., all q possible messages
with only one non-zero entry are present in the network, but they are confined
to the different connected parts. In other words, Qs(u) = δ(u − es), with es

the unit vector in direction s. Consider now the case pin < 1, but still large
enough, that the designed cluster structure is approximately the ground state.
The probability that a node in part s sends a message with a single non-zero
entry in the correct component is of course higher than sending a message with
the non-zero entry in the wrong component Qs(es) > Qs(er �=s). Additionally,
Qs(er �=s) must be the same for all r �= s due to our equipartitioning constraint.
The probability that a node of type s sends a message indicating a spin state
r different from s must be the same for all r �= s. In generalization of this
argument, we see that Qs(u) depends only on the number of non-zero entries
in u and on whether u has a non-zero entry in the “correct” component s.
The distribution of the remaining non-zero entries on the remaining q − 1
“wrong” components must not matter for Q(u), as all of them are equivalent.

This leads us to suggest an ansatz involving 2q − 1 order parameters ηcw

with c ∈ {0, 1} denoting the number of correct non-zero entries and w ∈
{1 − c, q − 1} denoting the number of wrong non-zero entries:

Qs(u) = ηcw with c = us and w = ||u||2 − 1. (6.56)

Here, us denotes the sth component of the message vector u under consider-
ation. The new order parameters obey the following normalization condition:

1∑

c=0

q−1∑

w=1−c

(
q − 1

w

)

ηcw = 1. (6.57)

We have thus introduced a preferred spin orientation for the different types
of nodes. Averaged over all types of nodes, however, we must ensure the
absence of a preferred spin orientation. The probability of sending or receiving
a message with τ non-zero entries from any type of nodes must only be a
function of τ :

∑

s

1
q
Qs(u) =

∑

s

1
q
Qs

in(u) = ητδ(τ − ‖u‖2). (6.58)

Otherwise, the solution would not correspond to an equipartition. In other
words, the condition for an equipartitioning is again enforced via demanding
that a randomly drawn edge carries all messages with τ non-zero entries with
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equal probability. Note, however, that the distribution of outgoing and incom-
ing messages may differ, Qs(u) �= Qs

in(u), in general. The first equality in the
above equation results from

∑

s

1
q
Qs

in(u) =
∑

s

1
q

∑

r

p(r|s)Qr(u) =
∑

r

1
q
Qr(u)

∑

s

p(r|s) =
∑

r

1
q
Qr(u).

(6.59)

We recover our earlier ansatz neglecting the different types of nodes by
setting η0,τ = η1,τ−1 = ητ as a special case. We will see that this remains the
only stable solution until pin is larger than a critical value pc

in above which
η0,τ < η1,τ−1 is the stable solution, i.e., the probability that a node sends a
message with a component indicating the “correct” direction is larger than
the probability of sending a message without such a component.

With these conditions at hand, we can now turn to calculate ηcw as a func-
tion of pin, the strength of the built-in clustering. The following development
aims at determining the dependence of these order parameters on the prop-
erties of the network. We will proceed by examining graphs with arbitrary
degree distributions but only two clusters and will then extend our analysis
to larger numbers of clusters.

6.2.2 Graphs with Two Clusters

Let us first study networks with only two clusters or types of nodes A and
B and therefore only two spin states. Before generalizing, we will carry out
all calculations for a random Bethe lattice with only three links per node.
Then we have three possible messages u ∈ {(1, 0), (0, 1), (1, 1)}. We use the
abbreviations ηs

10 = Qs(u = (1, 0)), ηs
01 = Qs(u = (0, 1)) and ηs

11 = Qs(u =
(1, 1)). The cavity equation (6.50) for the distribution of messages Qs(u) can
then be written for each of the two types of nodes s ∈ {A,B} as the following
system of three equations:

η
A/B
11 = (pinη

A/B
11 + poutη

B/A
11 )2

︸ ︷︷ ︸

η
A/B,in
11

(6.60)

+2 (pinη
A/B
10 + poutη

B/A
10 )

︸ ︷︷ ︸

η
A/B,in
10

(pinη
A/B
01 + poutη

B/A
01 )

︸ ︷︷ ︸

η
A/B,in
01

,

η
A/B
10 = (η

A/B,in
10 )2 + 2η

A/B,in
10 η

A/B,in
11 , (6.61)

η
A/B
01 = (η

A/B,in
01 )2 + 2η

A/B,in
01 η

A/B,in
11 . (6.62)

The symmetry condition (6.58) then reads

ηA
11 + ηB

11 = ηA,in
11 + ηB,in

11 = 2η2, (6.63)

ηA
10 + ηB

10 = ηA,in
10 + ηB,in

10 = 2η1, (6.64)

ηA
01 + ηB

01 = ηA,in
01 + ηB,in

01 = 2η1. (6.65)
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We see that we have in principle three messages for each of the two types of
nodes which means we have six order parameters to determine. Let us compare
the Eqs. (6.61) and (6.62) for both types of nodes A and B. They are invariant
under an interchange of A with B if at the same time the subscripts 10 and
01 are interchanged. This suggests a solution in which ηA

10 = ηB
01 = η10 and

ηA
01 = ηB

10 = η01 and consequently ηA
11 = ηB

11 = η11. Thus, we are left with only
two free order parameters to determine. With the introduction of the new
order parameters η10, η01, η11 we have, without loss of generality, assigned
a preferred spin orientation for the nodes of type A and B. The new order
parameters have precisely the form ηcw introduced on general grounds in our
discussion about the symmetry of the solution to the field equations. We hence
have assigned direction (1, 0) as “correct” for node type A and direction (0, 1)
as “correct” for node type B. The six Eqs. (6.61) and (6.62) can now be
written as only three equations, simply by dropping the indices A and B.

For our random Bethe lattice with three links per node Fig. 6.4 shows the
order parameters as solutions of (6.61) and (6.62), the ground state energy of
(6.1) according to (6.17) and the accuracy of recovering the built-in cluster
structure as a function of the intra-cluster link probability pin. Here we have
defined the accuracy of recovering the built-in cluster structure as a function
of the effective fields calculated according to (6.52). We denote as accuracy the
fraction of nodes from a pre-assigned cluster s that see a maximum component
of the effective field in direction s. If that maximum is n-fold degenerate, we
assume the node is assigned into any of the n corresponding clusters with
equal probability. We can read it directly as percentage of nodes classified
correctly.

In our example we find a ground state energy of ERnd = −25/18 ≈ −1.39
for the completely random lattice at pin = 1/2 from the order parameters
η11 = η10 = η01 = 1/3. This means that even in this completely random case,
we find a ground state configuration with an empirical internal link probability
of pemp

in = 25/27 ≈ 0.93. Näıvely, we expect changes in the ground state
energy to happen when pin > pemp

in or equivalently, when ERnd > Ed. From
Fig. 6.4 we now see that the ground state energy starts to change already at
pin = pc

in < pemp
in . We see that the true ground state energy is always smaller

than or equal to the planted ground state energy E ≤ Ep where the equal
sign holds only for pin = 1. This means we are always able to optimize the cut
around the designed partition and that the designed partition is never optimal
except for pin = 1. However, we also see that beyond pc

in the optimization
makes only small changes to the built-in assignment of nodes into clusters.
The point at which the accuracy increases is indicated by E < ERnd, i.e.,
we find a lower ground state energy than we expect to find in a completely
random network.

The most striking and possibly unexpected feature is that the accuracy
does not increase smoothly between 1/q < pin < 1. There exist cluster struc-
tures which may be very pronounced but which we cannot recover with our
approach. These remain hidden behind alternative assignments of spin states
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Fig. 6.4. Top: The order parameters ηcw for the planted bisection problem on a
random Bethe lattice with k = 3 links per node as a function of pin. The planted
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to nodes which produce lower energies and are completely uncorrelated with
the built-in cluster structure. The existence of these “spurious” solutions to
the clustering problem in networks shows that different algorithms must also
fail at recovering the pre-assigned clusters. Nevertheless, all partitions found
“feign” an internal link probability pin of at least pemp

in .
Let us now generalize these results to graphs with two clusters and arbi-

trary degree distribution. Note that so far we have only introduced a notation
that takes the symmetry conditions we have derived into account and we can
use this notation to generalize the cavity equations (6.61) and (6.62) to any
desired degree distributions:

η11 =
∞∑

n0=0

∞∑

n=0

q(n0 + 2n)
(n0 + 2n)!

n0!n!n!

(
ηin
10

)n (
ηin
01

)n (
ηin
11

)n0
, (6.66)

η10 =
∞∑

n0=0

∞∑

n1>n2

q(n0 + n1 + n2)
(n0 + n1 + n2)!

n0!n1!n2!

(
ηin
10

)n1
(
ηin
01

)n2
(
ηin
11

)n0
, (6.67)

η01 =
∞∑

n0=0

∞∑

n1>n2

q(n0 + n1 + n2)
(n0 + n1 + n2)!

n0!n1!n2!

(
ηin
01

)n1
(
ηin
10

)n2
(
ηin
11

)n0
. (6.68)

We can easily solve these equations for every value of pin and every degree
distribution by iteration. Recall that for values of pin < pc

in the solution
is that of the unclustered case, i.e., η10 = η01 = η1. This means that in this
parameter range, nodes of type A are equally likely to send a message pointing
in direction (1, 0) as in direction (0, 1). The cluster structure of the graph does
not play a role for the distribution of messages. Our goal is now to calculate
the critical value of pc

in beyond which the cluster structure of the graph under
study starts to influence the ground state structure. To do so, we will need
the solution of the unclustered case, i.e., for pin = 1/q which corresponds to
the original graph partitioning problem which we have solved in the previous
section.

6.2.3 Onset of Detectable Cluster Structure

We now proceed to the calculation of the critical value of pc
in beyond which

the designed cluster structure starts to influence the ground state of the par-
titioning problem. To do so, we first rewrite the order parameters slightly by
setting η10 = η01 + δ. From the definition of Qin(u) in (6.49) we can write

�
Fig. 6.4. (Continued) until a critical value of pin is reached. Middle: The ground
state energy E of (6.1) and the energy of the planted cluster structure Ep vs. pin.
The left vertical blue line indicates the critical value of pc

in beyond which η10 > η01

and E < ERnd and the planted cluster structure starts to influence the ground state
energy. The right vertical blue line indicates the näıve value of pn

in = 2ERnd/〈k〉
beyond which Ep < ERnd. Bottom: The accuracy with which the planted cluster
structure may be recovered. Again, the two vertical lines indicate pc

in and pn
in. The

inset shows that the accuracy increases dramatically, as soon as E < ERnd.
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ηin
10 = η10 − δpout, (6.69)

ηin
01 = η10 − δpin. (6.70)

Inserting these relations into (6.67) and (6.68) and linearizing we find an
equation for δ:

δ =
∞∑

n0=0

∞∑

n1>n2

q(n0+n1+n2)
(n0 + n1 + n2)!

n0!n1!n2!
(n1−n2)(pin−pout)δηn1+n2−1

10 ηn0
11 .

(6.71)
We are interested in the largest value of pin at which δ is non-zero but we can
still approximate the order parameters as η10 = η01 = η1 and η11 = η2, i.e.,
with the solutions from the completely random graph. This is the case for

(pc
in − pc

out)
−1 =

∑

n0=0

∑

n1>n2

q(n0 + n1 + n2)
(n0 + n1 + n2)!

n0!n1!n2!
(n1 − n2)

×ηn1+n2−1
1 ηn0

2 . (6.72)

Note how the order parameters for the unclustered case enter into the calcula-
tion. For a Bethe lattice with q(d) = δ(d−2), i.e., three connections per node,
and solutions to the unclustered problem of η1 = η2 = 1/3, we find pc

in = 7/8
as we could also have read from Fig. 6.4. Note the similarity of (6.72) with
the definitions of the order parameter η2 and X in (6.33). For graphs with
a Poissonian degree distribution with mean λ, we can simplify (6.72) fur-
ther, because of the equivalence of degree distribution p(k) and excess degree
distribution q(d):

(pc
in − pc

out)
−1 = λ

(

η2 +
Xλ

η1

)

. (6.73)

In the above equations, it is understood that pin + pout = 1.
Let us now compare the critical value pc

in for networks with two clusters
across different network densities and different degree distributions. As before,
we will compare graphs with Poissonian degree distribution (ER) and the
two types of scale free networks (SF Δk and SF kmin) already introduced
in Sect. 5.2. Figure 6.5 shows a comparison of pc

in for these networks for
different realizations with different average degree. It is interesting to note
the correspondence with Fig. 6.2. The critical point pc

in for a network with
given average connectivity is lowest for the degree distribution which is hardest
to cut, i.e., shows the lowest modularity in an unclustered case. The reason
for this is intuitive. The ground state energy of the partitioning Hamiltonian
in the completely unclustered case is just the depth of the deepest valley
in this energy landscape. If these are shallow, i.e., the graph is difficult to
cut and exhibits low values of modularity, then the minima induced by the
designed cluster structure will be more easily recognized. The general pattern
across all degree distributions is that pin decreases with increasing average
connectivity and the differences between the different degree distributions
matter less. Clusters are easier to detect in denser graphs.
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Fig. 6.5. Left: The critical value of pin beyond which the cluster structure starts
to influence the ground state of the bisection problem, i.e., below which clusters
cannot be detected. We compare Erdös–Renyi graphs (ER) with a Poissonian degree
distribution p(k) = e−λλk/k! and two types of scale-free degree distributions. The
first one being a stretched power law (SF Δk) of the form p(k) = (k + Δk)−γ with
Δk ∈[18, 19] and the second (SF kmin) being of the form p(k) = k−γ with a varying
minimum degree kmin with kmin ∈ [19, 20]. For both scale-free distributions we
choose γ = 3. Since we are interested only in the behavior of the giant connected
component, we set p(k = 0) = 0 in all cases. Note the correspondence to Fig. 6.2.
The critical value of pin is smaller, i.e., clusters are easier to detect, for networks with
degree distributions which are harder to cut, i.e., which display lower modularities
in the unclustered case. Right: The ratio of pc

in and pn
in, the näıve estimate for the

transition point pn
in = 2ERnd/〈k〉 which always overestimates pc

in.

6.2.4 Graphs with More than Two Clusters

After we have dealt with graphs containing only two clusters, we will now turn
to the problem of networks with more than two clusters. While in the case
of two clusters we could write the cavity equations for an arbitrary degree
distribution, we were able to find a simple formulation for more than two
clusters only for one special topology, the random Bethe lattice with three
links per node, such that a cavity field is composed of combining only two
messages. For graphs with a different topology, we will have to resort to a
population dynamics algorithm to be described in the next section.

Let us first consider how to calculate the ηin
cw for general q. A message with

τ = c+w non-zero entries will have one correct entry and w wrong entries for
τ types of nodes, while for q − τ types of nodes, it will have no correct entry
but w + 1 wrong entries. Hence we can write straightforwardly

ηin
1w = pinη1w +

(1 − pin)
q − 1

(wη1w + (q − 1 − w)η0,w+1) , (6.74)

ηin
0w = pinη0w +

(1 − pin)
q − 1

(wη1,w−1 + (q − 1 − w)η0,w) . (6.75)

We see that this recovers the unclustered case if η1w = η0,w+1 = ητ .
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6.2.5 Bethe Lattice with k = 3

For a Bethe lattice with exactly three links per node, we can write the cavity
equations for the order parameters ηcw for an arbitrary number of clusters as

η1w =

1∑

c=0

w−c∑

α=1−c

(
w
α

)

ηin
c,αηin

1−c,w−α +
(
ηin
1w

)2

+ 2ηin
1w

q−1−w∑

α=1

(
q − 1 − w

α

)

ηin
1,w+α

+

q−1−w∑

α=1

q−1−w−α∑

β=1

(
q − 1 − w

α

)(
q − 1 − w − α

β

)

ηin
1,w+αηin

1,w+β , (6.76)

η0w =

w−1∑

α=1

(
w
α

)

ηin
0,αηin

0,w−α +
(
ηin
0w

)2

+ 2ηin
1wηin

0w

+2

q−1−w∑

α=1

(
q − 1 − w

α

)

(ηin
0wηin

1,w+α + ηin
1wηin

0,w+α + ηin
0wηin

0,w+α)

+

q−1−w∑

α=1

q−1−w−α∑

β=1

(
q − 1 − w

α

)(
q − 1 − w − α

β

)

×(ηin
0,w+αηin

1,w+β + ηin
1,w+αηin

0,w+β + ηin
0,w+αηin

0,w+β). (6.77)

These equations must be read as describing the different ways and their
probabilities in which two messages can be combined to form a cavity field
and the resulting cavity bias. They can be iterated very easily to give the
order parameters over the entire range of pin.

Figure 6.6 shows two examples for a three and a four partitioning of the
Bethe lattice with three links per node. Note the similarity also to Fig. 6.4
and that pc

in decreases slightly for increasing q. The qualitative behavior of
the order parameters is the same across all degree distributions. Note how
η1,w−1 = η0,w for all pin ≤ pc

in and η1,w−1 > η0,w for all pin > pc
in. Also

note the different scales of the graphs, η10 quickly starts to dominate all other
order parameters.

6.2.6 Population Dynamics Formulation of the Cavity Equations

To generalize our calculation to other network topologies, we have to use a
population dynamics algorithm in order to solve the field equations. Recall
that the distribution of cavity biases Q(u) is entirely characterized by 2q − 1
order parameters ηcw. The 2q −1 possible messages all have one of only 2q−1
different probabilities of occurrence. Hence, instead of running a population
dynamics algorithm on a population of 2q −1 different messages, we can work
with a population of 2q − 1 different pairs of order parameter indices (c, w)
only. Upon drawing an order parameter index pair from the population, we
then generate a message containing the appropriate number of correct/wrong
zero and non-zero entries at random. In practice, such an algorithm would
run as follows:
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1. Start from a population of pairs of order parameter indices (c, w).
2. Draw a group index s with probability 1/q and the number of neighbors

d from the excess degree distribution q(d).
3. For each of the d neighbors, draw a group index ri with probability p(ri|s)

and a pair of order parameter indices (ci, wi) from the population.
4. For each pair of order parameter indices (ci, wi) generate a message ui

in the following way: If ci = 1, set the component ri of ui to one and to
zero otherwise. Distribute wi non-zero entries randomly among the q − 1
remaining components of ui.

5. Calculate the cavity field h0 =
∑d

i=1 ui and the cavity bias u0 = û(h0).
6. If component s of u0 is one, set c0 to one and to zero otherwise. Set

w0 = τ − c0 with τ being the number of non-zero entries in u0.
7. Replace an arbitrarily chosen pair of order parameter indices in the pop-

ulation by (c0, w0).
8. Continue with step 2 until convergence.

This converges to a population of order parameter indices, in which every pair
of order parameter indices is found over-represented by a factor corresponding
to its multiplicity. Our symmetry condition is enforced in this algorithm by
generating the appropriate messages for each pair of order parameter indices
randomly with equal probability. Note the differences and similarities to the
algorithm given in the previous section for the partitioning problem of the
purely random network.

Let us apply this algorithm to find the theoretical limit of community de-
tection for the benchmark test introduced in Chap. 4. Nodes are grouped into
four equal-sized pre-assigned groups. The degree distribution is Poissonian
with a mean of 〈k〉 = 16. A community structure is imposed by distributing
the links of each node with pin = 〈kin〉/〈k〉 among the members of the same
pre-assigned group of nodes and with 1 − pin among the remaining nodes in
the networks. Most authors of community detection algorithms have reported
their results for networks with 128 nodes corresponding to 4 groups of 32
nodes each. Danon et al. [28] give an overview of the performance of vari-
ous algorithms on this ensemble of test networks. Within our formalism, we
consider the same class of networks but in the thermodynamic limit with the
number of nodes tending to infinity. Figure 6.7 thus shows the order param-
eter for a q = 4 partition of ER networks with average degree 〈k〉 = 16 and
a predesigned community structure parametrized by pin calculated with the
above-described population dynamics algorithm.

We find the critical pin in this case to be pc
in ≈ 45%. This is in remarkable

correspondence to all empirical findings for different community detection al-
gorithms: So far, no algorithm has been found such that the detection accuracy
does not break down at pin ≈ 45%. With the formalism and population dy-
namics algorithm developed we are hence in the position to give a limit curve
for the theoretically achievable accuracy of community detection in graphs
with arbitrary degree distribution. Naturally, the transitions observed in Ref.
[28] are not sharp due to the finite size effects.
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Fig. 6.7. Achievable accuracy for the planted partition problem on ER graphs with
N → ∞, 〈k〉 = 16 and four equal-sized clusters and numerical results obtained
from the best graph clustering algorithms on equivalent networks with N = 128
to N = 16348 nodes [26, 28]. The observed differences are attributed to finite size
effects. From the figure we read off a critical pc

in ≈ 45%. With this value we recover
the critical value obtained by the best community detection algorithms [28] and at
the same time have found the theoretical limit for community detection algorithms
on this benchmark.

6.3 Conclusion

In this chapter we have used the cavity method directly at zero temperature to
study the problems of partitioning and clustering in random graphs with ar-
bitrary degree distributions. In particular, we studied the problem on random
graphs with a built-in cluster or community structure and investigated to
what extent such built-in structure influences the minimum cost solution of
the partitioning problem. Only if the built-in cluster structure influences the
partitioning problem, we can hope to recover a possibly hidden cluster struc-
ture in real world networks. The restriction to the case of equal-sized clusters
leads to a symmetry condition on the solution of the problem. It allowed a
reduction of 2q − 1 order parameters to only 2q − 1. We could show that
the number of order parameters is further reduced to q if the built-in cluster
structure does not influence the minimum cost solution of the partitioning
problem.

For the case of the bi-partitioning problem, we could derive analytical for-
mulas for the quality of the optimal partitioning solution. In the limit of dense
random graphs we could recover results known from replica calculations and
show that cut size is smaller in networks with Poissonian degree distribution
than in networks with scale-free degree distributions and the same average
degree. We showed that network-inherent cluster structure can only lead to
solutions of the field equations different from the case of random graphs with-
out cluster structure, if pin exceeds a critical value pc

in which thus marks the
threshold of detectable cluster or community structure. For the case of net-
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works with two clusters, we have given analytic expressions for this onset of
detectable community structure pc

in. We could show that this critical pc
in is

lower in scale-free networks than in networks of a Poissonian degree distribu-
tion of the same average degree. Hence, we could say community structures
are easier to detect in networks with a fat-tailed degree distribution. Together
with the dependence of the cut size on the degree distribution, this can be
summarized by the intuitive rule of thumb that possible clusters are easier to
detect in networks which are harder to cut.

For partitioning into more than two parts we have given an efficient pop-
ulation dynamics formulation to solve the field equations. We applied our
results to a family of test networks used for benchmarking the performance
of community detection algorithms and could derive a theoretical limit curve
for the possibly achievable detection accuracy of any community detection
algorithm. The comparison with the performance of algorithms published in
the literature [28] has shown that this limit has already been reached by the
best available algorithms.

The key result of our analysis is the demonstration that possibly strong
clusters exist in a network which are completely hidden behind alternative
spurious solutions. This is a typical limitation for exploratory data analysis or
data-driven research into which no prior knowledge enters. In order to increase
the detection accuracy of graph clustering algorithms, developers should hence
search for ways of incorporating prior knowledge into community detection
algorithms.

Our work has a number of implications for the analysis of real world net-
works with community detection algorithms. It could be shown that the de-
tection accuracy increases very fast as soon as the ground state energy (resp.
modularity) exceeds the expectation values for completely random graphs.
Hence, practitioners looking for means of assessing the possible accuracy of
their analysis may use our results as a baseline. More research is needed on
the sample to sample variation due to finite size effects in networks before
quantitative assertions can be made.

On the other hand, we have shown that modularities which do not exceed
the expectation values do not imply that no cluster structure can exist, but
rather that the cluster structures found can be considered uncorrelated with
any true cluster structure. Even though cluster structure may be present,
it may remain undetectable and hidden behind alternative solutions to the
clustering problem that have zero correlation with the true solution. If we were
to draw an analogy to unsupervised learning problems on multivariate data,
we could say the average connectivity of a network plays the role of the ratio
α between the number of data points and the dimensionality of a multivariate
data set. A number of transitions from unrecoverable to recoverable cluster
structure have been observed for multivariate data [27, 29–32] but always in
the number of data points. This means, for a data set of dimensionality D,
there is a minimum number of data points αD necessary to be able to recover a
built-in cluster structure. Hence, it is possible to recover any cluster structure,
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as long as enough data are provided. The fundamental difference in the case of
clustering in networks is that the average connectivity is not a free parameter
in sparse networks and cannot be increased by adding more nodes to the
network. Adding nodes to the network inevitably increases the dimensionality
of the data. Thus we are dealing with a qualitatively different phenomenon.
Though we have only derived these results here for the case of community
structures, i.e., diagonal block models, with equal-sized blocks, they remain,
at least in principle, valid also for other types of block models. They may be
valuable for the design of network clustering algorithms and their benchmarks
as well as for a critical assessment of the amount of information that can be
derived from unsupervised learning or data mining on networks.
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7

Applications

The previous chapters have mainly focussed on the theoretical aspects of our
block modeling procedure. This chapter now is devoted to applications. The
first will be an analysis of the United Nations commodity trade database on
the level of individual countries. We aim at inferring the block model which
best captures the flow of trade between different groups of countries. With
this example we have a rather dense weighted network. The block model we
infer will hence show where the volume of trade exceeds the expectation values
based on the total import and export volumes of individual countries, in other
words, “preferred” trade relations. The second example will show the analysis
of a very sparse data set of consumer interactions on an online auction site.
We are looking for groups of customers with common interests and will hence
try to find the best fit of a diagonal block model to the network.

7.1 Block Modeling the World Trade Network

In order to demonstrate our block modeling approach, we investigate a data
set for the year 2000 from the United Nations commodity trade database [1].
Independent research [2, 3] has shown that the 55 commodities that make up
the bulk of world trade, when factor analyzed, form 5 major groups and that
commodities are highly correlated within each group. These groups are dif-
ferentiated by proportions of production with extraction, capital-intensive or
labor-intensive processing. The five groups of commodities are (a) food prod-
ucts and by-products, (b) simple extractive, (c) sophisticated extractive, (d)
high technology and heavy manufacture and (e) low wage/light manufacture.
Representative for each of these groups, we chose one commodity each and
obtained five different networks of commodity trade. The five commodities
are (a) meat and meat preparations, (b) animal oil and fats, (c) paper, pa-
perboard and articles of pulp, (d) machinery and (e) footwear. The data set
is based on the volumes of import as reported by 112 countries to the UN in
2000. The only pretreatment applied to the data was to take the logarithm of

Reichardt, J.: Applications. Lect. Notes Phys. 766, 119–147 (2009)

DOI 10.1007/978-3-540-87833-9 7 c© Springer-Verlag Berlin Heidelberg 2009
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the trade volumes which preserves the relative strength of trade volumes but
reduces the effect that the fit of high volume countries alone dominates the
quality of the role models.

Since the five different commodities had been found to be largely inde-
pendent [2] and also have different overall volumes, we do not simply sum
the volumes but extend (3.15) in order to accommodate for different types of
links in the network. Instead of performing the same analysis for the different
commodities independently and trying to form a consensus a posteriori, we
include the different kinds of traded goods at the same time in the model
finding process. The quantity that we maximize is

Q({σ}) =
1
2

∑

c

q∑

r,s

‖mc
rs − [mc

rs]‖. (7.1)

Here, the first sum runs over the different commodities c and every country
i is assigned exactly one role σi ∈ {1, ..., q} which it assumes in all block
models. Further, mc

rs is the log of the total volume of commodity c imported
by countries in role r from those in role s. For the calculation of [mc

rs] we
use (3.22), i.e., the expectation value for the trade between two countries is
based on the marginals. It is hence proportional to the product of the log of
the total import volume of countries in role r and the log of the total export
volume of countries is role s. Once an assignment of roles to countries has been
found that maximizes (7.1), we can read off the five different image graphs Bc

rs

directly from the terms mc
rs − [mc

rs] as before. The different models can then
be overlaid easily as the same countries are assigned into the same roles for all
of them. The computational effort for this multi-commodity block modeling
is still moderate as it increases over the case of one link type only by a factor
of the number of different commodities.

Before discussing the block models we obtain, we need to determine the
optimal number of roles. We calculate Qc

max for each of the five commodities
separately according to (3.18). For different numbers of roles q, we then max-
imize (7.1) and find Q(q)/Qmax averaged over the five commodities. This is
necessary since we can define Qmax only for a single link type and (7.1) aims
at constructing a consensus model for all link types. This average value tells
us what fraction of the total link structure we mimic in our image graph. As a
random null model, we created randomized versions of the empirical data by
rewiring the original network but keeping the number of connections constant
for each node and link type. This holds the marginals roughly constant but
rewires the network topology. Then, the same procedure as for the empirical
data was used to obtain Q(q)rnd/Qmax,rnd which is also averaged over several
realizations of the disorder.

In the left part of Fig. 7.1 we compare the values of Q(q)/Qmax for the
empirical data and the randomized data. While the randomized data show
a linear increase with the number of roles from the beginning, the empirical
data show a strong increase at small numbers of roles and then also changes
into a linear regime.
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Fig. 7.1. Left: Average of Q(q)/Qmax over five commodities for the world trade
network as a function of the number of roles q in the block model. Red (x) denotes the
actual empirical data, blue (+) denotes the results averaged over randomly rewired
versions of the empirical data as a null model. While the randomized data show a
linear increase of Q/Qmax with the number of roles, the empirical data exhibit a
strong increase for smaller numbers of q and then also turns into a linear regime.
Right: Difference between Q/Qmax for the empirical data and the randomized data.
At q = 5 we observe the transition to the linear regime. At q = 9 the largest
difference between empirical data and the random null model occurs capturing 60%
of Qmax with only 8% of the total number of structural equivalence classes needed
to achieve this maximum.

The right part of Fig. 7.1 shows the difference in the ratio Q(q)/Qmax of
empirical and randomized data. Though every block model from q = 2 to
q = 112 has its own merit, after all, the countries do all have individuality, two
points may be chosen as particularly meaningful: either the number of roles
at which we observe the transition to a linear increase in Q(q)/Qmax which
happens at q = 5 or the point at which we observe the largest difference to
the randomized data at q = 9. An alternative approach to select the optimal
number of roles would be to use the minimum description length of the block
model as suggested in Ref. [4].

Note that as the number of roles increases, their memberships may merge
as well as split. Successive partitions are not always subdivisions forming
hierarchical clusters, although there is a strong tendency for that to occur.
The five rectangles enclosing pairs of roles in Fig. 7.2 show where subdivisions
tend to be hierarchical. In each case, however, some other countries also join
the new sub-roles, as, for example, when the less-developed periphery of the
two-role model splits into two sub-roles that are also joined by some countries
from the core.

Figure 7.3 shows the image graphs and block matrix plots for five and
nine roles. Note the progression of differentiation as more and more roles
are included. Already at q = 5 we observe a structure that can be seen as a
coarse-grained version of the model with nine roles, with the models in between
mediating the transition. Inspection of Table 7.1 shows for all the block models
that the progressive refinements in Fig. 7.3 induce a fair approximation to a
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Fig. 7.2. Splitting and merging diagram of the assortment of countries into roles as
the number of roles increases. The width of the arrows is proportional to the number
of countries that pass from role to role as the number of classes is increased by one.
Thin line rectangles indicate the major split on each level and thick line rectangles
show new roles formed from overlap or merging. See Table 7.1 for the individual
countries in each role at each level. The compact layout of this splitting/merging
diagram shows how splits tend to distribute countries to smaller blocks that are ad-
jacent in the partition order. This suggested the compact order of the blocks in Table
7.1 and Fig. 7.3. The only three exceptions to compactness are China’s realignment
to block 1 at level 3 and back to block 4 at level 4 and Saudi Arabia’s realignment
to block 3 at level 5. As already noted in the matrix plots and image graphs, dif-
ferentiation first happens around the Pacific and then in Europe, Africa and the
Middle East. Labels are CEU: Central Europe, EEU: Eastern Europe, ME: Middle
East, AF: Africa, NAF: Northern Africa, SEA: South East Asia, Polyn: Polynesia,
N+SAm: North and South and Middle America, SAm: South and Middle America,
NAJ: North America and Japan, 1P EU: 1st periphery EU, 2nd periphery EU.
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hierarchical clustering of roles. This is not required by the model and rather
than split as the number of roles increases, memberships merge from different
blocks about 8% of the time, including cases where two roles keep their identity
but contribute overlapping members to form a third.

A pattern of geographical proximities appears in an ordering of partitions
that minimizes distances between sets that are merged or split. This unique
compact layout of the splitting/merging diagram (comp. Fig. 7.2) is used
to order the partitions in Table 7.1. Countries in the same group tend to
be located in each other’s proximity. Geographical position is thus a strong
factor determining the grouping of countries. One reason is of course that
geographical proximity means that such countries have similar geographical
conditions and hence similar conditions for agriculture, mining, etc. Another
is that geographically close countries often form localized trade alliances and
trade is facilitated by short distances.

Additional to geographic proximity, the second striking feature of these
block models is that there exists considerable symmetry in the way the world
trade is organized. Symmetry of the image graphs suggests that there are also
regular equivalences across regions that organize the role structures across
different regions [3]. Let us consider the q = 9 model. Thus, on one hand, there
is the region around the Pacific with the United States, Canada and Japan
(8) in a central position, South America (9) as an out-group and South East
Asia (7) as a sub-center. On the other hand, we see the core of the European
Union (1) in an equally central position as the United States, Canada and
Japan (8), however, with Eastern Europe and the former Soviet Union (4)
assuming the position that South America (9) takes on across the Atlantic.
Scandinavia and some peripheral European countries such as Ireland, Austria,
Greece and also Turkey (2) are for the core EU states (1) what South East
Asia (7) is for North America and Japan (8). In the middle of all, we find the
African and Middle Eastern countries (5), Polynesia (6) and a second group
of peripheral European countries (3) which are Greenland, Iceland, Portugal,
Andorra, Malta and Israel in approximately equal positions.

It is also interesting to observe the gradual refinement of the roles, for
instance when concentrating on the core EU countries. For small numbers of
roles, countries such as Denmark, Sweden, Austria and Norway are grouped
together with them, but with more roles available, they are moved into their
own groups to merge with countries such as Cyprus, Finland and Ireland
which had been in more peripheral positions from the start. Such behavior
can be interpreted as showing, with greater refinement in the role structure,
the intermediary positions between the clear role of the core EU states and
the more peripheral countries.

Our choice of penalty function (3.22) makes the proposed framework for
block modeling a density-based measure but not, as in some earlier methods
[5], based on a notion of merely high/low densities within position-to-position
blocks compared to global densities. Rather, its partitions are based on the
marginal expectations from the paired row–column positional totals that meet
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in a given block, i.e., where links are concentrated. We thus take a different
approach than the parameter-rich mixture model approaches in Refs. [4, 6–10].
The method allows the use of weighted data sets of multiple link types which
is difficult for block modeling procedures based on probabilistic approaches.

Successive partitions are not necessarily sequential hierarchical sub-clusters
but may be overlapping. This allows for modeling the fact that actors do not
usually take on a single role but an intersection of roles. The proposed frame-
work may help to recover some of these intersections through the overlapping
partitions that occur with different granularities of roles.

In conclusion, this first application has shown that the approach presented
is able to recover meaningful assignments of nodes in a network into classes
of what one may call structural similarity. The choice of penalty function and
hence expectation values based on the marginals of the country to country
trade matrix has led to a grouping of countries mainly according to geography.
The links in the image graphs hence represent trade routes where the volume
exceeds the expectations. As such, the image graphs differ largely from other
maps of world trade which often emphasize the high volume links such as the
connection between the European Union and North America. It should be
noted that other choices of penalty functions may lead to very different image
graphs and groupings of countries into roles. In this lies the great flexibility of
the presented approach to block modeling, as it allows us to discover role struc-
tures which emphasize a number of different aspects of the network structure.

Table 7.1. Assignment of countries in models with two to nine roles. The horizontal

lines separate the q = 9 different roles of the most detailed block model from Fig. 7.3.

Note how the blocks form an almost perfect hierarchy in the way that successive

blocks split apart although this is not required by the algorithm. This is also shown

by the splitting diagram in Fig. 7.2 which further suggests the order of the groups

of countries in this table.

Group label Country q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9

Belgium-Luxembourg 1 1 1 1 1 1 1 1
France 1 1 1 1 1 1 1 1
Germany 1 1 1 1 1 1 1 1
Italy 1 1 1 1 1 1 1 1

Core EU Netherlands 1 1 1 1 1 1 1 1
Spain 1 1 1 1 1 1 1 1
Switzerland 1 1 1 1 1 1 1 1
United Kingdom 1 1 1 1 1 1 1 1

Denmark 1 1 1 1 1 1 2 2
Sweden 1 1 1 1 1 1 2 2
Austria 1 1 2 2 2 2 2 2

1st Peri. EU Turkey 1 2 2 2 2 1 2 2
Greece 1 2 2 2 2 2 2 2
Norway 1 2 2 2 2 2 2 2
Finland 2 2 2 2 2 2 3 2
Ireland 2 2 2 2 2 2 2 2
Cyprus 2 2 2 2 2 2 2 2

Portugal 2 2 2 2 2 2 2 3
Andorra 2 2 2 2 2 2 3 3

2nd Peri. EU Iceland 2 2 2 2 2 2 3 3
Israel 2 2 2 2 2 2 3 3
Greenland 2 2 3 2 2 2 3 3
Malta 2 2 2 2 2 2 4 3

Russian Federation 1 1 2 2 2 2 2 4
Czech Rep. 1 2 2 2 2 2 2 4
Turkmenistan 1 2 2 2 2 2 3 4
Albania 2 2 2 2 2 2 3 4
Armenia 2 2 2 2 2 2 3 4
Azerbaijan 2 2 2 2 2 2 3 4
Belarus 2 2 2 2 2 2 3 4
Bulgaria 2 2 2 2 2 2 3 4
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Table 7.1. (Continued)

Group Label Country q=2 q=3 q=4 q=5 q=6 q=7 q=8 q=9

East. Europe Georgia 2 2 2 2 2 2 3 4
Hungary 2 2 2 2 2 2 3 4
Iran 2 2 2 2 2 2 3 4
Kazakhstan 2 2 2 2 2 2 3 4
Latvia 2 2 2 2 2 2 3 4
Lithuania 2 2 2 2 2 2 3 4
Poland 2 2 2 2 2 2 3 4
Rep. of Moldova 2 2 2 2 2 2 3 4
Romania 2 2 2 2 2 2 3 4
Serbia and Montenegro 2 2 2 2 2 2 3 4
Slovakia 2 2 2 2 2 2 3 4
Tajikistan 2 2 2 2 2 2 3 4
Syria 2 2 2 2 2 3 4 4

Saudi Arabia 1 1 1 1 3 3 4 5
Algeria 2 2 2 2 2 3 4 5
Morocco 2 2 2 2 2 3 4 5
Tunisia 2 2 2 2 2 3 4 5
Bahrain 2 2 3 3 3 3 4 5
Comoros 2 2 3 3 3 3 4 5
Cote d’Ivoire 2 2 3 3 3 3 4 5
Ethiopia 2 2 3 3 3 3 4 5
Ghana 2 2 3 3 3 3 4 5

Africa, Mid. East Guinea 2 2 3 3 3 3 4 5
Jordan 2 2 3 3 3 3 4 5
Nigeria 2 2 3 3 3 3 4 5
Oman 2 2 3 3 3 3 4 5
Senegal 2 2 3 3 3 3 4 5
Togo 2 2 3 3 3 3 4 5
Burundi 2 3 3 3 3 3 4 5
Kenya 2 3 3 3 3 3 4 5
Mauritius 2 3 3 3 3 3 4 5
Pakistan 2 3 3 3 3 3 4 5
Uganda 2 3 3 3 3 3 4 5

China, Macao SAR 2 3 3 3 3 4 5 6
French Polynesia 2 3 3 3 3 4 5 6
Maldives 2 3 3 3 3 4 5 6
Nepal 2 3 3 3 3 4 5 6

Polynesia New Caledonia 2 3 3 3 3 4 5 6
New Zealand 2 3 3 3 3 4 5 6
Papua New Guinea 2 3 3 3 3 4 5 6
Philippines 2 3 3 3 3 4 5 6
Vanuatu 2 3 3 3 3 4 5 6

Malaysia 2 3 3 3 3 5 6 7
Indonesia 2 3 3 3 4 5 6 7
Singapore 2 3 3 3 4 5 6 7
South Africa 1 3 3 3 4 5 6 7

SE Asia Thailand 1 3 3 3 4 5 6 7
Australia 1 3 3 4 4 5 6 7
China 1 3 1 4 4 5 6 7
China, Hong Kong SAR 1 3 3 4 4 5 6 7
Rep. of Korea 1 3 3 4 4 5 6 7

Japan 1 3 3 4 5 6 7 8
North Am, Japan Canada 1 3 4 4 5 6 7 8

USA 1 3 4 4 5 6 7 8

Brazil 1 3 4 4 6 7 8 9
Argentina 1 3 4 5 6 7 8 9
Barbados 1 3 4 5 6 7 8 9
Honduras 1 3 4 5 6 7 8 9
Panama 1 3 4 5 6 7 8 9
Bolivia 2 3 4 5 6 7 8 9
Chile 2 3 4 5 6 7 8 9
Colombia 2 3 4 5 6 7 8 9
Costa Rica 2 3 4 5 6 7 8 9
Dominica 2 3 4 5 6 7 8 9
Ecuador 2 3 4 5 6 7 8 9

South America El Salvador 2 3 4 5 6 7 8 9
Guatemala 2 3 4 5 6 7 8 9
Jamaica 2 3 4 5 6 7 8 9
Mexico 2 3 4 5 6 7 8 9
Montserrat 2 3 4 5 6 7 8 9
Nicaragua 2 3 4 5 6 7 8 9
Paraguay 2 3 4 5 6 7 8 9
Peru 2 3 4 5 6 7 8 9
St Kitts and Nevis 2 3 4 5 6 7 8 9
St Lucia 2 3 4 5 6 7 8 9
St Vincent & Grnads. 2 3 4 5 6 7 8 9
Suriname 2 3 4 5 6 7 8 9
Trinidad and Tobago 2 3 4 5 6 7 8 9
Uruguay 2 3 4 5 6 7 8 9
Venezuela 2 3 4 5 6 7 8 9

7.2 Communities of Common Interest among eBay Users

Our second example will also be a trade network. However, this time we will
deal with a network of individual persons which interact by competing on a
large market. Instead of looking for the best fitting block model, this time, we
will try to find the optimal fit of the network to a diagonal block model which
corresponds to a grouping of agents into communities of common interest.
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The Internet has changed the way people communicate, work and do busi-
ness. One example is online auction sites, the largest being eBay with its
more than 150 million registered users worldwide [11]. An interesting aspect
of eBay’s success is its transparency. The market is fully transparent as the
trading history of every user is disclosed to everyone on the Internet. In this
chapter, a network of competitors in this market is investigated and users
are clustered into groups with homogeneous buying interest profiles, so-called
market segments. In economics, market segmentation studies are often the
starting point in designing targeted marketing campaigns and the quality and
validity of this exploratory data analysis are crucial for their success. How-
ever, such studies often have to deal with several difficulties: First, a specific
similarity measure has to be tailored and second, if the data are very high
dimensional and sparse it requires dimensionality reduction to make conven-
tional methods applicable. This, however, may introduce bias in the analysis.
In contrast, our method of block modeling is able to work directly on the
raw data and without the introduction of any similarity measure. Our results
show how market participants use the online auction site and where there is
economic growth potential for the host apart from increasing the number of
users of the site.

Let us first recall the operating principle of an online auction in Fig. 7.4.
Users may offer goods through the online platform and set a deadline when
their auction will end. Articles are listed under a certain taxonomic product
category by the seller and are searchable platform wide. Users with a par-
ticular demand either browse through the articles listed in an appropriate
category or search for articles directly. Until the end of the auction they may
bid on the article. The user with the highest bid at the end of the auction
wins (so-called hard-close) and buys the article. In every new auction, users
may assume different new roles as sellers, bidders or buyers. The market can

Fig. 7.4. Structure of a single auction. Users express their common interest in
a particular article by bidding. The user with the highest bid wins the auction
and exchanges money and the article with the seller. eBay earns a fee with every
transaction. Users of the auction site, i.e., bidders, buyers or sellers, may change
their role in a different auction of another article.
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be represented as a graph with the users and/or articles as the nodes and the
links denoting their interactions as shown in Fig. 7.4.

A number of researches have presented statistical studies of trading [12]
and analyses of bidding strategies and auction ending rules [13, 14]. Here,
the focus lies on the market segmentation of the eBay auction site. At a
certain level of abstraction the population of consumers can be assumed to be
separated into relatively clear-cut and homogenous subgroups corresponding
to certain customer milieus or market segments [5]. Customers of the same
type are described by a common pattern in their consumer interests which
leads to a higher probability of bidding for the same article [15] and thus to
a higher density of interactions between users of the same type. This is the
reason we will directly try to fit a diagonal block model to the network. We
will solely use the information of which users competed in the same auctions,
i.e., for single articles. This fitting of a diagonal block model can be interpreted
as a kind of cluster analysis [16, 17] of the bidding behavior of the users in
our data set. The classification is possible even for this very sparse and high-
dimensional data set [18] with each bidder on average taking part in only
slightly more than 3 out of 1.6 million possible auctions.

Classical clustering techniques generally fail for such high-dimensional data
due to the “curse of dimensionality” [19], a problem which arises when the
dimension D of the data set to be clustered increases [18]. The data points
become increasingly sparse as the dimensionality increases and the relative
difference between the closest and the farthest neighbor of a randomly selected
point in the data set goes to zero with increasing dimension [18, 20]. In our
case, the dimension of the space of articles is 1.6 million.

Other conventional analysis techniques such as correspondence analysis
[5, 21] have to make use of a similarity measure between articles in order to
reduce the dimensionality and coarse-grain the data, such as exploiting the
annotation of articles into product categories. However, this bears several pit-
falls: First, the annotations are defined by the seller who lists the article such
that it can be found efficiently, hence, the categorization is mainly a taxonomy.
Using this to coarse-grain the data would introduce a bias in the analysis. Sec-
ond, eBay categories differ largely in size when counting the number of articles
in the category as well as the number of sub-categories. Correcting for this
again may introduce a bias. Third, using the category taxonomy for coarse-
graining induces a hierarchy in the data, as all articles below the cut in the
taxonomy tree are subsumed. Fourth and most importantly, it is not clear at
which level in the category tree a coarse-graining should be performed and
whether this level should be the same for all branches.

Our analysis is independent of taxonomic categories and dimensionality
reduction. We will show how to find evidence for hierarchical and overlapping
cluster structures as well. The product categories are solely used to interpret
the results of the study, i.e., provide interest profiles of user groups found in
terms of this taxonomy.
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By clustering users directly according to a common demand spectrum,
problems of conventional basket analysis done by frequent item sets [22–25]
are also circumvented. The latter asks which articles are frequently demanded
by a single person. This analysis is performed for all articles averaging over
the entire population of consumers and hence results in the least common
denominator of articles which may then be bundled together and marketed
together to the whole population of customers. The same is true for cluster
analysis of eBay categories [14]. The block modeling procedure used here,
however, reveals information about people and their diverse and possibly very
special interests.

7.2.1 Data Set

A data set consisting of over 1.59 million auctions ending during the pre-
Christmas season December 6–20, 2004. Considering only articles located in
Germany, the user id of seller, buyer and all bidders competing in each auction
was recorded, as well as the individual bids and the product category in which
the article was listed (excluding articles listed in the real estate category which
was in a beta testing phase at the time). Since auctions last between 7 and 10
days depending on the choice of the seller, a bidding period of up to 25 days
is covered was obtained from the German eBay site www.ebay.de.

The pre-Christmas time is a suitable time for analysis for the following
reasons: First, traffic is very high. In fact, there was a broad advertising cam-
paign in Germany advertising to shop for Christmas presents on eBay. Second,
only auctions are considered and one expects that users are unlikely to bid
for articles for which they cannot assess a fair price. Third, if users shop
for presents, then one can gain some information about their family back-
ground, e.g., people shopping for toys will most likely have a child themselves
or among their closer relatives. The results indicate that this is indeed the
case. Table 7.2 summarizes the data set in its basic parameters. There are
far less sellers than bidders and only 38% of the sellers also act as bidders or
buyers. This indicates that users are split into those mostly selling and those
mostly buying.

Table 7.2. Summary of the data set of online auctions obtained between December
6 and 20, 2004. Numbers in millions.

Auctions observed: 1.59
Users acting as buyer: 0.95
Users acting as seller: 0.37

Users acting as bidder: 1.91
Users acting as seller and bidder: 0.14
Users acting as seller and buyers: 0.08



130 7 Applications

7.2.2 User Activity

The activity of the users is measured via the probability mass distribu-
tions of the number of articles sold p(s), bought (auctions won) p(w) and
bid on p(a). Though it is possible to bid multiply in a single auction,
we neglect this fact and use “bid” and “take part in an auction” syn-
onymously. Similar to previous studies [12], we find fat-tailed distributions
of the user activity. Due to the short time span observed and a constant
growth of the market, one cannot regard these distributions as representing
a steady state. Nevertheless, some insight can be obtained. We compared
maximum likelihood fits of the data to log-normal distributions of the form
p(x) ∝ (x − θ)−1 exp[− 1

2 (ln((x − θ)/m)/σ)2] and power laws of the form
p(x) ∝ (x + Δx)−κ and find that both kinds of distribution characterize the
data almost equally well with a slight advantage for the power law especially
for the very rare events in the tail of the distribution as can also be observed
in the cumulative plots. In Ref. [12], only power laws were considered. For the
number of bidders b taking part in an auction, the “attractiveness of an arti-
cle”, we consider an exponential distribution q(b) ∝ αb. A possible alternative
distribution, the binomial or Poisson distribution can be ruled out, as the em-
pirical distribution is monotonously decreasing and these distributions would
require a maximum at the average value. Alternatively, an almost perfect fit
can be achieved when assuming q(b) ∝ exp(−b1.117/3.7). However, we prefer
the simple model with only one free parameter α = 1 − 1/〈b〉 and attribute
the observed deviation at high numbers of bidders per article to a saturation
effect. We believe that if an article has attracted a critical number of bidders,
potential additional bidders are more reluctant to join because of the already
strong competition and hence there are up to 10 times less articles with 15
or more bidders than expected from the simple model. Recalling that only
1 in 1000 auctions attracts more than 15 bidders, naturally, our hypothesis
would have to be confirmed or rejected by future research. Figure 7.5 shows a
graphical representation of these distributions and Table 7.3 summarizes the
parameters obtained by maximum likelihood fitting [26, 27].

The distribution of the number of articles sold per seller falls off slowest,
followed by the number of articles bid on and the number of articles bought.
Here, we see the professionalization on the seller side of the market. There are
“power-sellers” making a living from selling via eBay, but there are hardly any
“power-buyers” professionally buying on eBay. This shows that eBay is more
of a selling platform than an actual trading site, where selling and buying
activities would be more balanced.

If we assume that the tail of the distribution of the number of articles
sold per seller is representative of the “firm size” of these users and compare
these to the long-term statistics of firm sizes in the United States given by
Axtell [28], we can confirm the power law tail of the distribution, but not
the exponent of κ = 2. Instead, we find κ = 2.31 and thus the observed
distribution falls off faster. We can only speculate on the reasons for this and
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Fig. 7.5. User activity during the pre-Christmas season 2004. From top left to
bottom right: probability mass function (left) and cumulative probability distribution
(right) of the number of articles sold p(s), different auctions participated in p(a)
and number of articles bought p(w) as well as number of bidders participating in
an auction q(b). For the first three distributions, the red solid lines correspond
to maximum likelihood fits with power laws p(x) ∝ (x + Δx)−κ while the blue
dashed lines correspond to fits with a log-normal distribution of the form p(x) ∝
(x − θ)−1 exp[− 1

2
(ln((x − θ)/m)/σ)2]. The fits for the cumulative distribution take

the finite size of the sample into account. For the distribution of the desirability of
an article q(b), the red line represents a maximum likelihood exponential fit of the
form q(b) ∝ αb. Parameter estimates and log likelihood scores can be found in Table
7.3.
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Table 7.3. Estimated parameters of activity distributions of observed users in auc-
tions. For the distribution of the number of articles sold per seller p(s), the number
of auctions taken part in by a bidder p(a) and the number of articles bought by a
buyer p(w), we show the maximum likelihood estimates of the parameters for both
a log-normal distribution p(x) ∝ (x − θ)−1 exp[− 1

2
(ln((x − θ)/m)/σ)2] as well as

for a shifted power law of the form p(x) ∝ (x + Δx)−κ . Further, we indicate the
likelihood scores of these distributions for the data. Note that all distributions are
better described as power laws, but the difference to the log-normal is very small.
For the distribution of the number of bidders taking part in an auction, we assume
an exponential form q(x) ∝ αx and show the ML estimate of the parameter α.
Additionally, the averages of all quantities are given.

p(x) 〈x〉 θ m σ LLN Δx κ LPow α

p(s) 4.3 0.93 1.28 1.55 −1.9427 0.96 2.31 −1.9419
p(a) 2.9 0.82 1.08 1.32 −1.6722 1.55 2.90 −1.6719
p(w) 1.7 0.90 0.60 1.21 −1.0415 0.90 3.43 −1.0414
q(b) 3.4 0.71

further study is needed here to compare new and old economy. In an earlier
study, Yang et al. had reported an exponent of κ = 3.5 for the distribution
of the number of auctions a bidder takes part in from a data set obtained in
2001 [12] and we found κ = 2.9 in our data. If this discrepancy is the result
of a trend and not due to the differences in the observed countries and sizes
of the data set, and this trend holds also for the distribution of the seller’s
activity, then one may be able to observe a convergence toward the exponent
of κ = 2 known from the old economy. Further study is needed regarding this
hypothesis.

The fat tails of the distribution are striking given the short time span
observed. Consider the most active bidder taking part in over 800 auctions!
This user seems to follow a gambling strategy bidding only minimal amounts
as he/she wins only a few of these auctions. The most successful buyer who
won 201 auctions on the other hand took part in only 208 auctions. This
hints at a diversity of strategies employed by users of the online auction site.
Curiously, the article most desired and attracting 39 different bidders was a
ride in a red Coca-Cola-Truck. The fat tails of the distribution also show that
there is no “typical” user activity, rather, one observes activities at all scales.

7.2.3 User Networks

From the original data a number of market networks can be constructed. The
most natural one would of course be the network of users connected by actual
transactions. Another would be the network of sellers that are connected if
they have sold to the same user. Then, the links in the network would rep-
resent a possible competition or a possibility for cooperation, depending on
the portfolio of articles offered by these sellers. This situation is also known
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as “co-opetition”. Similarly, such a co-opetition network could also be con-
structed based on the fact that different sellers have received bids from the
same user. Further, the construction of customer groups based on the fact that
they have bought from the same seller is possible which again would define a
co-opetition situation for the sellers that join these customers. One could also
study the relations of articles or categories based on joining them to networks
when they have received bids from the same users. This would then resemble
a frequent item or frequent category analysis.

Here, the focus lies on the bidder network based on single articles. Two
bidders are linked if they have competed in an auction. Since all users who
bid in a single auction are connected, this network results from overlaying
fully connected cliques of bidders that result from each auction. Such graphs
are also known as affiliation networks [29–31]. Note that one could also assign
weights to links between bidders according to the number of times they have
met or according to some function of the amount of money they have bid.

Prior to a block modeling analysis in this bidder network, we study its
general statistical properties looking for indications of block structure [32].
We compare the results to a randomized null model (RNM) obtained from
reshuffling the original data, i.e., keeping the attractiveness of each auction
and the activity of each bidder constant, but randomizing which bidders take
part in which auction. If the presence of clusters of users with a common in-
terest has an influence on the statistical parameters of the network, it should
be detectable by comparison with such a random null model. Figure 7.6 shows
a comparison between the empirical data and the RNM in terms of the cu-
mulative degree distribution, the cumulative distribution of the link weights
as well as the clustering coefficient c(k) as a function of the degree k.

The shapes of the cumulative degree distributions agree quite well between
the RNM and the original data. However, for higher values of k, the distri-
bution of the empirical data lies below that of the RNM. Since meeting the
same competitor twice in different auctions does not lead to an increase in the
number of neighbors in the network, this shows that competitors meet more
often in the real world than expected from the random null model.

Furthermore, the bidder network is compared with theoretical predictions
derived from the distribution of the bidding activity and the distribution of
the number of bidders per auction which can be obtained by employing the
generating function formalism [31]. Two generating functions are defined for
the distribution pa of the number of different auctions a a bidder takes part in
and qb for the number of different bidders b that compete in an auction [31]:

f0(x) =
∞∑

a=0

paxa and g0(x) =
∞∑

b=0

qbx
b. (7.2)

It is assumed that p0 = q0 = 0 in derivations hereafter, since the data set
contains only bidders that have taken part in at least one auction and only
those auctions which had attracted at least one bidder were recorded. The
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Fig. 7.6. Comparison of the bidder network with a random null model (RNM).
Top: Cumulative degree distribution P (k). The degree distribution found empiri-
cally (solid red line) lies below that of the random null model (dashed blue line).
Middle: Cumulative distribution of the link weights in the bidder network. The dis-
tribution for the empirical data (solid red line) lies above that of the random null
model (dashed blue line). Bottom: Distribution of the clustering coefficient c(k) as a
function of the degree k of the nodes. The clustering is higher for the empirical data
(red crosses) than for the RNM (blue circles). The two dashed lines indicate two
power laws ∝ k−κ with exponents κ = 1 and κ = 0.8, respectively, for comparison.
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mean number of auctions a bidder takes part in and the mean number of
bidders per auction are then given by

〈a〉 = f ′
0(x = 1) and (7.3)

〈b〉 = g′0(x = 1). (7.4)

The specific forms of pa and qb are taken from the empirical data. The expo-
nential distribution for the attractiveness of an auction for instance suggests
qb = (1−α)αb−1 from which 〈b〉 = 1/(1−α) follows, which is just the equation
by which the parameter α is estimated using the maximum likelihood method.
The degree distribution of the bidder network can be calculated from pa and
qb using a generating function formalism. Assuming that bidders never meet
twice in different auctions, the generating function of the degree distribution
in the bidder network is [31]

G0(x) = f0(g′0(x)/g′0(1)). (7.5)

The functions f0(x) and g0(x) are the generating functions for the bidding
activity and the attractiveness of an article as introduced by (7.2). The degree
distribution then follows from the derivatives of the generating function with
respect to x:

p(k) =
1
k!

dk

xk
G0(x)|x=0 (7.6)

= αk
∑

a

pa(1 − α)2a

(
2a − 1 + k

k

)

. (7.7)

A theoretical expectation for the average number of neighbors in the bidder
network can be estimated from the average number of bidders per auction 〈b〉
and the average number of auctions a user takes part in 〈a〉:

〈k〉 = G′
0(1) = 〈a〉 〈b

2〉 − 〈b〉
〈b〉 = 〈a〉 2α

1 − α
(7.8)

= 2(〈b〉 − 1)〈a〉. (7.9)

This yields an estimated value for the average number of links in the network
of 〈k〉 = 14 which is in excellent agreement with the result from the RNM
(〈k〉 = 13.9), but larger than in the actual data (〈k〉 = 12.9) confirming
our expectation. See Table 7.4 for a summary of the basic parameters of the
empirical data and the RNM.

Comparing the cumulative distribution of the link weights, i.e., the number
of times two bidders have met in different auctions, we find a much more
prominent difference between the data and the RNM. Figure 7.6 shows that
the weights of the links in the bidder network are distributed with a power law
tail. Approximately 6% of all links correspond to pairs of bidders who have
met more than once. If there would be no common interest among bidders,
practically all links would have weight 1 as is indeed the case for the RNM.
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Table 7.4. Summary of basic parameters for the bidder network with two bidders
linked, if they have competed in an auction. Shown are the actual data, the parame-
ters for a random null model (RNM) obtained by reshuffling the bidders in different
auctions and the reduced version of the network used for cluster analysis containing
only those bidders having taken part in more than one auction.

Data RNM Reduced

Number of nodes: 1.8 × 106 1.8 × 106 0.9 × 106

Number of links: 11.6 × 106 12.6 × 106 7.4 × 106

Average degree: 12.9 13.9 16.4
Assortativity: 0.02 −(4 ± 3) × 10−4 0.03

Additionally to the distribution of degrees and link weights, we compare
the distribution of the clustering coefficient as a function of the degree of a
node. The clustering coefficient c(k) denotes the average link density among
the neighbors of a node of degree k. Due to the construction process of the net-
work as an affiliation network, we expect that for large numbers of neighbors
k the clustering coefficient c(k) scales as k−1 in the case of random assign-
ment of bidders to auctions [30]. Figure 7.6 shows that this is indeed the case
for the RNM, but the actual data deviate strongly for bidders with a large
number of neighbors and show higher clustering. This effect can arise from
two processes: either bidders with whom one competes in two different auc-
tions also meet independently in a third auction or that there is an increased
probability that one will compete again with a bidder one has already met
once in an auction. Both explanations support our assumption of the presence
of clusters of users with common interest. Note that the scaling of the corre-
lation coefficient with the degree of the nodes and exponent −1 is purely a
consequence of the construction process of the network and not an indication
for hierarchical modularity as introduced by Ravasz et al. [33].

With these comparisons, the bidder network is shown to be far from ran-
domly constructed and one can proceed by studying the block structure for
which indirect evidence was found already. Table 7.4 summarizes again the
basic parameters of the bidder network, the randomized null model and the
reduced version of the bidder network which will be used for fitting a diagonal
block model in the following section.

7.2.4 Market Segmentation

7.2.4.1 Network Clustering

The analysis of the user interests in the eBay market is based on the bidder
network as constructed in the previous section. The links in this network
represent articles the connected bidders (nodes) have a common interest in.
The network is reduced to only those bidders that have taken part in at
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least two auctions and only auctions with a final price below 1, 000 Euro are
considered, thereby focussing on consumer goods. See Table 7.4 for the basic
parameters of this reduced network.

If one now finds groups of users (clusters or communities [34–36]) with
a high density of links among themselves and a low density of links to the
rest of the network, the total set of links within such a group of users can
be interpreted as a unifying common interest of this group. We fit a diagonal
block model as introduced in Chap. 4. Recall the quality function Q used:

Q =
∑

s

(mss − γ[mss])
︸ ︷︷ ︸

css

= −
∑

s<r

(mrs − γ[mrs])
︸ ︷︷ ︸

ars

. (7.10)

Note that any assignment of bidders into groups which maximizes Q will be
characterized by both maximum cohesion of groups and minimal adhesion
between groups. If Q is maximal, every node is classified in that group to
which it has the largest adhesion. Compare Chap. 4 again for examples and
further details of this quality function. Maximally 500 different groups of
bidders were allowed in the analysis which gives a sufficient level of detail.

Figure 7.7 compares the results obtained with γ = 0.5 and γ = 1. Shown
are the adjacency matrices Aij of the largest connected component of the
bidder network. A black pixel at position (i, j) and (j, i) is shown on an
889, 828× 889, 828 square if bidders i and j have competed in an auction and
hence Aij = 1, otherwise the pixel is left white corresponding to Aij = 0.
The rows and columns are ordered such that bidders who are classified as
being in the same group are next to each other. The internal order of bidders
within groups is random. The order of the groups was chosen to optimally
show the correspondence between the ordering resulting from the γ = 0.5 and
the γ = 1 ordering. In this representation, link densities correspond to pixel
densities and thus to gray levels in the figure. Information about the exact
size and link density contrast of the clusters is given in Table 7.5. Note the
high contrast between internal and external link density.

At the top of Fig. 7.7, the adjacency matrix ordered according to an opti-
mal assignment of bidders into groups with γ = 0.5 is shown. Clearly, a small
number of major clusters of bidders and a large number of smaller clusters are
identified, strongly connected internally and well separated from one another.
The largest eight clusters are marked with letters A through H. Of all bid-
ders in the network, 85% are classified in these eight clusters. At the bottom,
the same adjacency matrix is shown, but now rows and columns are ordered
according to an optimal assignment of bidders into groups with γ = 1.

As expected, a larger number of smaller, denser clusters are found, which
are numbered 1 through 13. In order to analyze whether the network has
a hierarchical or overlapping cluster structure, a consensus ordering of the
bidders from the γ = 0.5 and γ = 1 ordering is defined by reshuffling the
internal order of the γ = 0.5 clusters according to the γ = 1 clustering.
Remember the orderings for the two values of γ were obtained independently.
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Fig. 7.8. Risk ratios of bidding in one of the 32 main eBay product categories
for classified users. Top: from γ = 0.5 classification. Bottom: from γ = 1 classifica-
tion. Spectra with a dashed background (cluster id in parenthesis) show customer
purchases 6−9 months after original classification. See text for details.
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Table 7.5. Summary of basic parameters for the major communities found in the
bidder network (annotated as in Fig. 7.7). N denotes the number of bidders in the
cluster, 〈kin〉 and 〈kout〉 the average numbers of neighbors within the cluster and
in the rest of the network, respectively. By pin and pout the internal and external
link density are denoted, respectively. The average link density in the network is
〈p〉 = 1.9 × 10−5.

Cluster N 〈kin〉 〈kout〉 pin pout

A 200630 10.2 3.4 5.1E-05 5.0E-06
1 84699 10.3 4.0 1.2E-04 5.0E-06
2 29323 9.0 5.2 3.1E-04 6.0E-06
3 76182 10.1 4.1 1.3E-04 5.0E-06
B 102188 18.6 3.9 1.8E-04 5.0E-06
4 44830 24.6 4.2 5.5E-04 5.0E-06
5 26325 14.2 5.2 5.4E-04 6.0E-06
C 19915 14.1 4.3 7.1E-04 5.0E-06
6 20020 14.5 4.3 7.3E-04 5.0E-06
D 124702 16.5 3.8 1.3E-04 5.0E-06
7 74913 17.2 4.1 2.3E-04 5.0E-06
8 41359 16.8 5.9 4.1E-04 7.0E-06
E 183313 15.4 4.2 8.4E-05 6.0E-06
9 73722 13.4 6.5 1.8E-04 8.0E-06
10 47937 17.5 5.9 3.7E-04 7.0E-06
F 74657 10.5 4.9 1.4E-04 6.0E-06
11 62115 11.1 5.0 1.8E-04 6.0E-06
G 31337 11.0 6.0 3.5E-04 7.0E-06
12 18835 11.8 6.1 6.3E-04 7.0E-06
H 19620 10.0 4.4 5.1E-04 5.0E-06
13 18286 9.9 4.4 5.4E-04 5.0E-06

If the network possesses a hierarchical structure in the sense that the clusters
obtained at higher values of γ lie completely within those obtained at lower
values of γ, then the consensus ordering would not differ from the ordering at
γ = 1. If, however, clusters at lower values of γ overlap and this overlap forms
its proper cluster at higher values of γ, the network is not entirely hierarchical.
These aspects will become immediately clear by looking at the middle part
of Fig. 7.7. For clarity, the borders of the γ = 0.5 clustering are marked.
Clusters 1 and 2 fall entirely within cluster A giving an example of a cluster
hierarchy. Cluster 3, however, is split by the consensus ordering into one part
A3 belonging to A and B3 belonging to B (see arrows in figure). It is now clear
that clusters A and B actually have some overlap which was not visible in the
γ = 0.5 ordering. This overlap is concentrated in cluster 3, parts of which
belong stronger to either A or B. Clusters 4 and 5 then fall again completely
within cluster B. Clusters C and 6 are practically identical. Cluster D has a
number of sub-clusters, the largest of which is 7 and overlaps with cluster E
through cluster 8 as before (see arrows again). Group E has two more sub
groups 9 and 10 while clusters 11, 12 and 13 fall entirely within clusters F, G
and H, respectively. More details about hierarchical and overlapping cluster
structures including some toy examples can be found in Chap. 4. Note that in
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principle, we could have tried to find the optimally fitting block model directly
by optimizing (3.15) but did not do so here, because we were specifically
interested in finding an optimal assignment into diagonal blocks.

7.2.4.2 Cluster Validation, Interpretation and Time Development

To validate the statistical significance and to rule out the possibility the ob-
served cluster structure is merely a product of the clustering algorithm or the
particular method of constructing the network from overlapping cliques of
bidders, let us compare the results to those obtained for appropriate random
null models. Maximizing Q also for the RNM version of the bidder network,
again taking into account those bidders which took part in at least two auc-
tions, a value of Q = 0.28 at γ = 1 is found, which is significantly less than
the value of Q = 0.64 for the empirical data. Furthermore, the RNM shows
all equal-sized clusters, while the real network clearly possesses major and
Minor clusters. A random graph with the same number of nodes and links,
i.e., disregarding the scale-free degree distribution and the affiliation network
structure of the graph, would yield only Q = 0.23 (5.65).

Until now we only found groups of bidders which had an increased proba-
bility to meet other members of their groups in the auctions they took part in.
The eBay product categories are now used in order to find an interpretation
of the common interests that lead to the emergence of the cluster structure of
the bidder network. Since cluster sizes vary and the number of articles in the
individual categories is very diverse, the risk ratios (RR) for bidding in one
of the 32 main categories are calculated. This risk ratio is defined as

RRCs =
P (bidding in C|member of cluster s)

P (bidding in C|not member of cluster s)
, (7.11)

i.e., the ratio of the chance or “risk” of bidding in category C, given a bidder
is a member of group s vs. the risk of bidding in category C given the bidder
is a member of any group r �= s. Figure 7.8 shows a graphical representation
of the risk ratios for clusters A through H and most of the clusters 1 through
13. All spectra are normalized. The exact numerical values can be found in
Table 7.6. Clusters from the γ = 1 assignment are more specific with less
entries in the category spectrum and larger RRs.

Cluster A unites bidders interested in articles listed in the baby, beauty,
fashion, books, movies and music category. Cluster 1 then represents a more
specifically content-oriented user group mainly interested in books, movies
and music. As has been shown, cluster 1 is an almost complete sub-cluster
of A. Cluster 2 is also a complete sub-cluster of A and encompasses bidders
mainly interested in cosmetics and fashion.

Cluster B contains two sub-clusters 4 and 5, both annotated in the toy
model category. Closer inspection, however, reveals that cluster 4 is mainly
characterized by its interest in model railways while the bidders in cluster
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5 have a passion for model cars, radio-controlled models, slot cars and the
like. Note the advantage of clustering based on single articles. The clusters
found with one simple unbiased method combine top level categories as in
the case of cluster 1 or can only be described by resorting to sub-categories
as in the case of clusters 4 and 5. From Fig. 7.7, it had been observed that
cluster 3 is responsible for a large part of the overlap between clusters A and
B. One can see that users in this group 3 have their main interests in the baby
and toy category. The overlap of cluster A and B is hence mediated via the
toy category. Members of cluster A and B mainly meet in toy auctions. The
interpretation of the other clusters is then equally straightforward.

Bidders in clusters C and the practically identical cluster 6 take interest in
audio equipment and instruments. Cluster D represents bidders with an incli-
nation to collecting, their bids being placed in the antiques, jewelry, stamps
and coins category (cluster 7). The bidders in cluster E are mainly shopping
for technological gadgets, computers, consumer electronics, software, mobile
phones, PDAs, etc. (clusters 9 and 10). Their overlapping interest with bidders
from cluster D is in items from the photo category (cluster 8).

In groups F and 11, one finds predominantly practically oriented users who
place their bids mainly in the categories of automotive spare parts, business
and industry (where a lot of tools and machinery are auctioned) and do-it-
yourself. Finally, in groups G and 12 one finds event-oriented customers with
strong bidding activity in the tickets and travel category and in group H and
13, people bidding on sports equipment are found.

Let us now focus on the time development of the user interests. The data
for this analysis were collected during a relatively short time span only (25
days) and the results are based on an extremely sparse data set. Remember
that every bidder in the network took part in only three auctions on average.
Is it really possible to predict meaningful patterns of consumer interest from
such sparse data? One could further argue that the few most active bidders
account for a large portion of the bids, thus holding the network together
and “defining” the clusters of interest, because they also contribute a large
number of links. In order to address this question, the data set was revis-
ited in the beginning of September 2005. From the 6 largest clusters of the
γ = 1 ordering, 10, 000 users each were sampled uniformly and randomly.
Note that this removes possible bias toward very active users, they are now
represented in the data according to their proportion in the population. The
trading history of these users was analyzed as far back as eBay permits – 90
days thus covering the period between June and September 2005. For these
60, 000 users, the product categories of the articles they had bought between
June and September were determined.

Again, the risk ratios were calculated, the time of buying, i.e., winning
an auction, from a particular category and with the new sample of users as
basic population. The results are shown in Fig. 7.8 with a dashed background
and the cluster id from which the users were sampled in parenthesis. The
stability of the interest profiles is quite remarkable. The main interests have
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remained unchanged as compared to the initial study though in some cases the
spectrum has become more diverse. For instance the content-oriented bidders
of cluster 1 now also show increased buying activity in the PC games and
tickets category. At the same time the main interest has shifted from movies
to music. The largest number of product categories with increased chance of
bidding in this category is found for cluster 9, the members of which are the
most technology affine users anyway and which would be expected to satisfy
a very broad range of consumer needs from online vendors. The members
of cluster 7 (the collectors) and cluster 4 (the toy model builders) are much
more conservative and almost do not change their profile at all. Without
secondhand data about the age structure of the bidders classified, one can
only speculate that these clusters are formed by older customers who tend to
stick to particular categories.

7.3 Summary

In this chapter, we have seen two applications of our block modeling approach,
both for the case of finding an optimal block model as well as fitting a diagonal
block model to the network. We worked with both weighted and extremely
sparse data sets. The analysis did not need any prior knowledge or the defi-
nition of any kind of similarity measure between the nodes in the network in
order to work. Rather, secondhand information such as the geographical lo-
cation for the countries in the world trade data or the taxonomic information
about articles provided by eBay was used solely to interpret our results.

With regard to the eBay study it is interesting to note that one can classify
85% of all users into only a fistful of well-separated, large groups, all of which
have a distinct profile of only a few main interests as revealed by annotating
the articles in the taxonomy of product categories. Some of the clusters show
sub-clusters or overlap with other clusters. The interest profiles identified are
remarkably stable. Sampling randomly from the clusters and checking what
these users bought during a 3-month period in the summer of 2005, one finds
that the profiles of articles bought were almost identical to those from the
classification 6 months earlier.

This is striking because virtually everything is offered on eBay and one
would expect users to satisfy a much broader range of shopping interests.
However, it appears that the major clusters mainly correspond to people’s
favorite spare time activities. The apparent stability of user’s buying and
bidding behavior may reflect the permanence of their interests, which is also
stabilized by their social environment and activities. The clear signature in
the market data may stem from the fact that users tend to buy online only
articles where they have some experience and expertise in. Users seem hesitant
to bid on articles from categories in which they have not previously bid in.

This may be due to the fact that inexperienced users cannot judge what
is a fair price for an article in an auction and they have difficulty assessing
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to what extent the article offered really suits their needs. At the same time,
user’s interests are reinforced by online recommender systems [37, 38], which
suggest similar articles to those already bought by the user. This temporal
stability corroborates the hypothesis that the presence of latent interest pro-
files in the society per se leads to the emergence of user groups with common
interest. Transparent markets such as online auction sites in which users act
independent and anonymously are perfect starting points for research into
this collective behavior. The methods presented in this monograph provide
the tools to start this endeavor.
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Conclusion and Outlook

This monograph has dealt with exploratory data analysis in relational data,
specifically with the detection of common patterns in the link structure of
networks. Such connectivity patterns lead to a blocking structure in the adja-
cency matrices of networks when ordering rows and columns such that rows
and columns corresponding to nodes with the same pattern of connectivity are
adjacent. As such, one can understand the analysis as a kind of dimensionality
reduction for sparse, relational data sets.

There were two primary goals to be achieved. First, to develop a simple
but flexible method which would allow us to deal with very large and very
sparse data sets to cope with the ever increasing amount of empirical data
that is collected by scientists across the disciplines using novel experimental
techniques and information technology. Dimensionality reduction is usually
part of the early stages of exploratory data analysis and results are used to
interpret the data and decide on further analysis steps or experiment plan-
ning. The second and equally important goal is therefore to guard against
the deception of randomness, i.e., making sure we do not mistakenly regard
spurious structures due to random fluctuations in the data as true patterns.

The approach taken in this monograph is mapping the problem of pattern
detection onto an optimization problem. Starting from a very general ansatz,
we obtained a novel quality function for the fit between the original high
dimensional network and its low dimensional representation, the so-called im-
age graph or block model. The general philosophy of this quality function is
to find the assignment of nodes into blocks which deviates maximally from a
given, generally random, null model for the connections in the network. Hence,
pattern detection is understood as detecting deviations from null models. In
being able to deal with arbitrary null models lies the flexibility of the qual-
ity function. The random null model for the network may be given as prior
information or inferred directly from the data.
For two specific random null models, computationally efficient local update
rules were given which allow us to find optimal image graphs using only the
sparse connections in the networks and a global bookkeeping term. This allows
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for easy parallelization of the optimization routines as well as for the analysis
of very large systems. Further research into such null models could lead to, e.g.,
expressions suitable for Barabási–Albert networks where the link probability
depends on the age of the nodes or for k-partite networks or expressions which
allow to take degree correlations into account.

An important special case is when the image graph of a network consists of
isolated nodes with self-links only. Fitting such an image graph to a network
using the proposed quality function then means to partition the network into
a number of cohesive subgroups of nodes, so-called modules, communities
or clusters, which are densely connected within, but only sparsely between
groups. Then, the proposed quality function is called modularity and bears a
formal analogy with the energy of an infinite range q-state Potts spin glass.
This analogy allows us to use the toolbox of statistical mechanics to obtain
expectation values for the quality function in cases of purely random networks.
Hence, we are able to set a threshold to discern true structure in the data.
Only when the quality of the fit exceeds the expectation value for a purely
random network, we can be sure we have found true structure in the data.

For entropic reasons, when clustering random graphs, clusters of equal size
are found. This means that in purely random networks clustering and parti-
tioning into equal-sized parts are equivalent, i.e., minimum cut and maximum
modularity are then equivalent problems. For random graphs with arbitrary
degree distributions expectation values for the modularity were calculated
using the replica method and the cavity method. For a partition into only
two clusters the expected modularity scales as ∝ 〈k1/2〉/〈k〉1/2. The sparser
a random graph, i.e., the smaller the average degree, the higher the expec-
tation value for the modularity found in this graph. Since structure is only
detectable if it leads to a fit score which exceeds the expectation value for a
purely random graph, we find that community detection is more difficult in
sparser networks which show higher values of intrinsic modularity. Together
with our findings on the expectation value of modularity for different degree
distributions, we see that community detection is simpler in networks with a
broader degree distribution.

The next question is naturally by how much the fit score has to exceed
a random expectation value so that one can expect a certain accuracy in
recovering a cluster structure in the network. Hence, the problem of recovering
planted cluster structures from networks using minimum cuts was studied
using the cavity method. As expected from the considerations following the
replica calculations, one finds a transition from undetectable to detectable
cluster structure as the density of intra-cluster links is increased at the expense
of inter-cluster links.

Surprisingly, this transition is sharp and a result of the sparsity of the
data and not a finite size effect. Even in infinitely large networks with finite
average connectivity, this transition exists. Hence, there may exist cluster
structure which is not detectable by unsupervised methods in principle. It is
hidden between alternative solutions leading to better fit scores, but which are
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uncorrelated with the structure underlying the data. There exists a detection
threshold for cluster structure in networks. Benchmarking showed that our
proposed method for detecting cluster structures in networks already reaches
this threshold and hence produces near-optimal results. In the future, these
calculations will need to be extended to more general image graphs. Besides
giving expectation values of the quality of fit of general image graphs to ran-
dom graphs in the thermodynamic limit, finite size corrections should be ap-
plied in order to give an estimate of the variance of the fit score around these
expectation values. This is necessary in order to eventually be able to give
p-values for block structures found in complex networks.

Two examples from economics show the power of the proposed method for
block structure detection and how it can be used efficiently to study problems
from a variety of fields.

Questions of the emergence and evolution of the block structures pose fur-
ther interesting challenges for future research. Are there microscopical models
that will produce certain kinds of block structures? Are different types of
networks characterized by different types of block structures? The interplay
between block structures and dynamical processes on networks is only vaguely
understood. Consider for example the question of global structure vs. local
information. While we have used knowledge of the entire network in our anal-
ysis so far, agents operating in networks are generally only aware of their
local neighborhood. Since block structure is a general feature of networks, an
interesting question to ask is whether agents can still be aware of global struc-
ture despite having only localized interactions. Possible mechanisms could be
repeated interactions and diffusion of information in networks. Many having
questions about the interplay of topology and dynamics such as this still
remain unanswered and pose interesting challenges for complex networks re-
search.

Throughout this monograph, we have successfully applied tools and results
of physics that were originally developed for the study of condensed matter
phenomena in a completely different context. This use of analogies to physi-
cal systems and methods developed in the realm of physics can be a fruitful
approach in many fields of science. In this work, the connection between a
spin system and a combinatorial optimization problem, the detection of block
structure in networks, was exploited. Both a solution method and an under-
standing of the optimization problem itself could be derived. Naturally, the
application of physics methods to diverse non-physical problems will also lead
to an advancement of these methods from which physics itself will again bene-
fit. Though this work could only give an account of one cycle of this iteration,
its further pursuit is a promising and rewarding endeavor.
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